On regular CAT(0) cube complexes and the simplicity of automorphism groups of rank-one CAT(0) cube complexes

2018 ◽  
Vol 93 (1) ◽  
pp. 33-54
Author(s):  
Nir Lazarovich
Author(s):  
Thomas A. Fournelle

AbstractRational abelian groups, that is, torsion-free abelian groups of rank one, are characterized by their types. This paper characterizes rational nilpotent groups of class two, that is, nilpotent groups of class two in which the center and central factor group are direct sums of rational abelian groups. This characterization is done according to the types of the summands of the center and the central factor group. Using these types and some cohomological techniques it is possible to determine the automorphism group of the nilpotent group in question by performing essentially matrix computations.In particular, the automorphism groups of rational nilpotent groups of class two and rank three are completely described. Specific examples are given of semicomplete and pseudocomplete nilpotent groups.


Author(s):  
BENJAMIN MILLARD ◽  
KAREN VOGTMANN

Abstract We construct free abelian subgroups of the group U(AΓ) of untwisted outer automorphisms of a right-angled Artin group, thus giving lower bounds on the virtual cohomological dimension. The group U(AΓ) was studied in [5] by constructing a contractible cube complex on which it acts properly and cocompactly, giving an upper bound for the virtual cohomological dimension. The ranks of our free abelian subgroups are equal to the dimensions of principal cubes in this complex. These are often of maximal dimension, so that the upper and lower bounds agree. In many cases when the principal cubes are not of maximal dimension we show there is an invariant contractible subcomplex of strictly lower dimension.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anthony Genevois

Abstract If G is a group acting geometrically on a CAT(0) cube complex X and if g ∈ G has infinite order, we show that exactly one of the following situations occurs: (i) g defines a rank-one isometry of X; (ii) the stable centraliser SCG (g) = {h ∈ G ∣ ∃ n ≥ 1, [h, gn ] = 1} of g is not virtually cyclic; (iii) Fix Y (gn ) is finite for every n ≥ 1 and the sequence (Fix Y (gn )) takes infinitely many values, where Y is a cubical component of the Roller boundary of X which contains an endpoint of an axis of g. We also show that (iii) cannot occur in several cases, providing a purely algebraic characterisation of rank-one isometries.


1970 ◽  
Vol 11 (8) ◽  
pp. 2415-2424 ◽  
Author(s):  
M. Anthea Grubb ◽  
D. B. Pearson

1972 ◽  
Vol 46 ◽  
pp. 97-109
Author(s):  
Susan Williamson

Let k denote the quotient field of a complete discrete rank one valuation ring R of unequal characteristic and let p denote the characteristic of R̅; assume that R contains a primitive pth root of unity, so that the absolute ramification index e of R is a multiple of p — 1, and each Gallois extension K ⊃ k of degree p may be obtained by the adjunction of a pth root.


2020 ◽  
Vol 11 (2) ◽  
pp. 1-33
Author(s):  
Haibing Lu ◽  
Xi Chen ◽  
Junmin Shi ◽  
Jaideep Vaidya ◽  
Vijayalakshmi Atluri ◽  
...  

Author(s):  
Constanze Liaw ◽  
Sergei Treil ◽  
Alexander Volberg

Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $d$ perturbations $A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$, ${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$, with ${\operatorname{Ran}}{\textbf{B}}$ being cyclic for $A$, parametrized by $d\times d$ Hermitian matrices ${\boldsymbol{\alpha }}$, the singular parts of the spectral measures of $A$ and $A_{\boldsymbol{\alpha }}$ are mutually singular for all ${\boldsymbol{\alpha }}$ except for a small exceptional set $E$. It was shown earlier by the 1st two authors, see [4], that $E$ is a subset of measure zero of the space $\textbf{H}(d)$ of $d\times d$ Hermitian matrices. In this paper, we show that the set $E$ has small Hausdorff dimension, $\dim E \le \dim \textbf{H}(d)-1 = d^2-1$.


Sign in / Sign up

Export Citation Format

Share Document