On the $K$-Theory Groups of Certain Crossed Product $C*$-A1gebras

1994 ◽  
Vol 13 (1) ◽  
pp. 3-6
Author(s):  
A. Paolucci
Keyword(s):  
1997 ◽  
Vol 08 (05) ◽  
pp. 555-571
Author(s):  
Cristina Cerri

For each α ≥ 0, let Bα be the universal C*-algebra generated by unitary elements uα, vα and a self-adjoint hα such that ||hα|| ≤ α and [Formula: see text]. In this work we prove that the family {Bα}α ∈ [0,∞[ extend the family of soft torus with the same basic properties, i.e., the field of C*-algebras {Bα}α ∈ [0,α0] is continuous and each Bα is a crossed product of a C*-algebra homotopically equivalent to C(S1) by Z. We then show that the K-groups of Bα are isomorphic to Z ⊕ Z. Applying results from the theory of rotation algebras we prove that every positive element (n,m) in K0(Bα) satisfies |m|α ≤ 2πn. It follows that these C*-algebras are not all homotopically equivalent to each other, although they have the same K-groups.


2015 ◽  
Vol 117 (2) ◽  
pp. 186 ◽  
Author(s):  
Magnus Dahler Norling

We use a recent result by Cuntz, Echterhoff and Li about the $K$-theory of certain reduced $C^*$-crossed products to describe the $K$-theory of $C^*_r(S)$ when $S$ is an inverse semigroup satisfying certain requirements. A result of Milan and Steinberg allows us to show that $C^*_r(S)$ is Morita equivalent to a crossed product of the type handled by Cuntz, Echterhoff and Li. We apply our result to graph inverse semigroups and the inverse semigroups of one-dimensional tilings.


1999 ◽  
Vol 19 (3) ◽  
pp. 611-625 ◽  
Author(s):  
ALAN FORREST ◽  
JOHN HUNTON

Given a $\mathbb{Z}^d$ homeomorphic action, $\alpha$, on the Cantor set, $X$, we consider the higher order continuous integer valued dynamical cohomology, $H^*(X,\alpha)$. We also consider the dynamical $K$-theory of the action, the $K$-theory of the crossed product $C^*$-algebra $C(X)\times_{\alpha}\mathbb{Z}^d$. We show that these two invariants are essentially equivalent. We also show that they only take torsion free values. Our work links the two invariants via a third invariant which is based on topological complex $K$-theory evaluated on an associated mapping torus.


Author(s):  
S. KALISZEWSKI ◽  
MAGNUS B. LANDSTAD ◽  
JOHN QUIGG

Recent work by Baum et al. [‘Expanders, exact crossed products, and the Baum–Connes conjecture’, Ann. K-Theory 1(2) (2016), 155–208], further developed by Buss et al. [‘Exotic crossed products and the Baum–Connes conjecture’, J. reine angew. Math. 740 (2018), 111–159], introduced a crossed-product functor that involves tensoring an action with a fixed action $(C,\unicode[STIX]{x1D6FE})$ , then forming the image inside the crossed product of the maximal-tensor-product action. For discrete groups, we give an analogue for coaction functors. We prove that composing our tensor-product coaction functor with the full crossed product of an action reproduces their tensor-crossed-product functor. We prove that every such tensor-product coaction functor is exact, and if $(C,\unicode[STIX]{x1D6FE})$ is the action by translation on $\ell ^{\infty }(G)$ , we prove that the associated tensor-product coaction functor is minimal, thereby recovering the analogous result by the above authors. Finally, we discuss the connection with the $E$ -ization functor we defined earlier, where $E$ is a large ideal of $B(G)$ .


2018 ◽  
Vol 2018 (734) ◽  
pp. 265-292
Author(s):  
Guillermo Cortiñas ◽  
Gisela Tartaglia

AbstractWe prove theK-theoretic Farrell–Jones conjecture for groups with the Haagerup approximation property and coefficient rings andC^{*}-algebras which are stable with respect to compact operators. We use this and Higson–Kasparov’s result that the Baum–Connes conjecture holds for such a groupG, to show that the algebraic and theC^{*}-crossed product ofGwith a stable separableG-C^{*}-algebra have the sameK-theory.


Author(s):  
Oliver King ◽  
Guyan Robertson

AbstractLet Γ be an Ã2subgroup of PGL3(), whereis a local field with residue field of orderq. The module of coinvariantsC(,ℤ)Γis shown to be finite, whereis the projective plane over. If the group Γ is of Tits type and ifq≢ 1 (mod 3) then the exact value of the order of the class [1]K0in the K-theory of the (full) crossed productC*-algebraC(Ω) ⋊ Γ is determined, where Ω is the Furstenberg boundary of PGL3(). For groups of Tits type, this verifies a conjecture of G. Robertson and T. Steger.


1987 ◽  
Vol 39 (5) ◽  
pp. 1210-1222
Author(s):  
Toshikazu Natsume

An action α of a discrete group Γ on the circle S1 as orientation preserving C∞-diffeomorphisms gives rise to a foliation on the homotopy quotient S1Γ, and its Godbillon-Vey invariant is, by definition, a cohomology class of S1Γ([1]). This cohomology class naturally defines an additive map from the geometric K-group K0(S1, Γ) into C, through the Chern character from K0(S1, Γ) to H*(S1, Γ Q).Using cyclic cohomology, Connes constructed in [2] an additive map, GV(α), which we shall call the Godbillon-Vey map, from the K0-group of the reduced crossed product C*-algebra C(S1) ⋊ αΓ into C. He showed that GV(α) agrees with the geometric Godbillon-Vey invariant through the index map μ from K0(S1, Γ) to K0(C(S1) ⋊ αΓ).


Author(s):  
KENGO MATSUMOTO

Abstract This paper is a continuation of the paper, Matsumoto [‘Subshifts, $\lambda $ -graph bisystems and $C^*$ -algebras’, J. Math. Anal. Appl. 485 (2020), 123843]. A $\lambda $ -graph bisystem consists of a pair of two labeled Bratteli diagrams satisfying a certain compatibility condition on their edge labeling. For any two-sided subshift $\Lambda $ , there exists a $\lambda $ -graph bisystem satisfying a special property called the follower–predecessor compatibility condition. We construct an AF-algebra ${\mathcal {F}}_{\mathcal {L}}$ with shift automorphism $\rho _{\mathcal {L}}$ from a $\lambda $ -graph bisystem $({\mathcal {L}}^-,{\mathcal {L}}^+)$ , and define a $C^*$ -algebra ${\mathcal R}_{\mathcal {L}}$ by the crossed product . It is a two-sided subshift analogue of asymptotic Ruelle algebras constructed from Smale spaces. If $\lambda $ -graph bisystems come from two-sided subshifts, these $C^*$ -algebras are proved to be invariant under topological conjugacy of the underlying subshifts. We present a simplicity condition of the $C^*$ -algebra ${\mathcal R}_{\mathcal {L}}$ and the K-theory formulas of the $C^*$ -algebras ${\mathcal {F}}_{\mathcal {L}}$ and ${\mathcal R}_{\mathcal {L}}$ . The K-group for the AF-algebra ${\mathcal {F}}_{\mathcal {L}}$ is regarded as a two-sided extension of the dimension group of subshifts.


Author(s):  
M. Rørdam ◽  
F. Larsen ◽  
N. Laustsen
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document