Fixed Point Theory for Weakly Contractive Maps with Applications to Operator Inclusions in Banach Spaces Relative to the Weak Topology

1998 ◽  
Vol 17 (2) ◽  
pp. 281-296 ◽  
Author(s):  
Donal O'Regan
2000 ◽  
Vol 61 (3) ◽  
pp. 439-449 ◽  
Author(s):  
Donal O'Regan

A variety of fixed point results are presented for weakly sequentially upper semicontinuous maps. In addition an existence result is established for differential equations in Banach spaces relative to the weak topology.


2013 ◽  
Vol 63 (4) ◽  
Author(s):  
Hemant Nashine

AbstractIn [18], Matthews introduced a new class of metric spaces, that is, the concept of partial metric spaces, or equivalently, weightable quasi-metrics, are investigated to generalize metric spaces (X, d), to develop and to introduce a new fixed point theory. In partial metric spaces, the self-distance for any point need not be equal to zero. In this paper, we study some results for single map satisfying (ψ,φ)-weakly contractive condition in partial metric spaces endowed with partial order. An example is given to support the useability of our results.


2010 ◽  
Vol 258 (10) ◽  
pp. 3452-3468 ◽  
Author(s):  
Carlos A. Hernandez Linares ◽  
Maria A. Japon

2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Wei-Shih Du

We first establish some existence results concerning approximate coincidence point properties and approximate fixed point properties for various types of nonlinear contractive maps in the setting of cone metric spaces and general metric spaces. From these results, we present some new coincidence point and fixed point theorems which generalize Berinde-Berinde's fixed point theorem, Mizoguchi-Takahashi's fixed point theorem, and some well-known results in the literature.


1991 ◽  
Vol 4 (1) ◽  
pp. 47-69 ◽  
Author(s):  
Dajun Guo

In this paper, we combine the fixed point theory, fixed point index theory and cone theory to investigate the nonnegative solutions of two-point BVP for nonlinear second order integrodifferential equations in Banach spaces. As application, we get some results for the third order case. Finally, we give several examples for both infinite and finite systems of ordinary nonlinear integrodifferential equations.


Mathematics ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 578
Author(s):  
Afrah A. N. Abdou ◽  
Mohamed Amine Khamsi

Kannan maps have inspired a branch of metric fixed point theory devoted to the extension of the classical Banach contraction principle. The study of these maps in modular vector spaces was attempted timidly and was not successful. In this work, we look at this problem in the variable exponent sequence spaces lp(·). We prove the modular version of most of the known facts about these maps in metric and Banach spaces. In particular, our results for Kannan nonexpansive maps in the modular sense were never attempted before.


Symmetry ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 29
Author(s):  
Priyam Chakraborty ◽  
Binayak S. Choudhury ◽  
Manuel De la Sen

In recent times there have been two prominent trends in metric fixed point theory. One is the use of weak contractive inequalities and the other is the use of binary relations. Combining the two trends, in this paper we establish a relation-theoretic fixed point result for a mapping which is defined on a metric space with an arbitrary binary relation and satisfies a weak contractive inequality for any pair of points whenever the pair of points is related by a given relation. The uniqueness is obtained by assuming some extra conditions. The metric space is assumed to be R -complete. We use R -continuity of functions. The property of local T-transitivity of the relation R is used in the main theorem. There is an illustrative example. An existing fixed point result is generalized through the present work. We use a method in the proof of our main theorem which is a blending of relation-theoretic and analytic approaches.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Saïd Abbas ◽  
Mouffak Benchohra ◽  
Gaston M. N'Guérékata

This paper deals with some existence of mild solutions for two classes of impulsive integrodifferential equations in Banach spaces. Our results are based on the fixed point theory and the concept of measure of noncompactness with the help of the resolvent operator. Two illustrative examples are given in the last section.


2019 ◽  
Vol 150 (3) ◽  
pp. 1467-1494
Author(s):  
Claudio A. Gallegos ◽  
Hernán R. Henríquez

AbstractIn this work we are concerned with the existence of fixed points for multivalued maps defined on Banach spaces. Using the Banach spaces scale concept, we establish the existence of a fixed point of a multivalued map in a vector subspace where the map is only locally Lipschitz continuous. We apply our results to the existence of mild solutions and asymptotically almost periodic solutions of an abstract Cauchy problem governed by a first-order differential inclusion. Our results are obtained by using fixed point theory for the measure of noncompactness.


Sign in / Sign up

Export Citation Format

Share Document