Single point mutation of a gene creates mirror-image animals in fresh water gastropod

Author(s):  
Reiko Kuroda
2021 ◽  
Author(s):  
Jasmine N. Tutol ◽  
Jessica Lee ◽  
Hsichuan Chi ◽  
Farah N. Faizuddin ◽  
Sameera S. Abeyrathna ◽  
...  

By utilizing laboratory-guided evolution, we have converted the fluorescent proton-pumping rhodopsin GR from Gloeobacter violaceus into GR1, a red-shifted, turn-on fluorescent sensor for chloride.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Zhan Yin ◽  
Nils Burger ◽  
Duvaraka Kula-Alwar ◽  
Dunja Aksentijević ◽  
Hannah R. Bridges ◽  
...  

AbstractMitochondrial complex I is central to the pathological reactive oxygen species (ROS) production that underlies cardiac ischemia–reperfusion (IR) injury. ND6-P25L mice are homoplasmic for a disease-causing mtDNA point mutation encoding the P25L substitution in the ND6 subunit of complex I. The cryo-EM structure of ND6-P25L complex I revealed subtle structural changes that facilitate rapid conversion to the “deactive” state, usually formed only after prolonged inactivity. Despite its tendency to adopt the “deactive” state, the mutant complex is fully active for NADH oxidation, but cannot generate ROS by reverse electron transfer (RET). ND6-P25L mitochondria function normally, except for their lack of RET ROS production, and ND6-P25L mice are protected against cardiac IR injury in vivo. Thus, this single point mutation in complex I, which does not affect oxidative phosphorylation but renders the complex unable to catalyse RET, demonstrates the pathological role of ROS production by RET during IR injury.


2007 ◽  
Vol 44 (6) ◽  
pp. 1417-1428 ◽  
Author(s):  
Veronica V. Volgina ◽  
Tianhe Sun ◽  
Grazyna Bozek ◽  
Terence E. Martin ◽  
Ursula Storb

1998 ◽  
Vol 252 (1) ◽  
pp. 184-189 ◽  
Author(s):  
Marzia Nuccetelli ◽  
Anna P. Mazzetti ◽  
Jamie Rossjohn ◽  
Michael W. Parker ◽  
Philip Board ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document