scholarly journals Advance Technique to Increase Production from Tight Formations Using HiWAY Flow-Channel Hydraulic Fracturing Technique

2017 ◽  
Vol 07 (01) ◽  
Author(s):  
Ahammad Sharif MD ◽  
Nagalakshmi NVR ◽  
Srigowri Reddy S ◽  
Vasanth G ◽  
Uma Sankar K
2010 ◽  
Vol 50 (1) ◽  
pp. 581 ◽  
Author(s):  
Mohammad Sarmadivaleh ◽  
Vamegh Rasouli

Production from tight formations is becoming a main focus around the world and particularly in Australia. Hydraulic fracturing is one of the commonly used approaches to stimulate production from tight reservoirs. A good understanding of mechanical properties of formation and the in-situ stresses is essential for a hydraulic fracturing study. In this work, using the log based approach, the mechanical properties and in-situ stresses were estimated in a tight gas formation. This data is then used as input for 2D numerical simulation of hydraulic fracturing in particle flow code (PFC). The initiation and propagation of an induced fracture was studied by increasing the rock strength to simulate a tight formation response. Thereafter, the model was divided into two zones to investigate the fracture containment capacity to simulate a fracture intersecting an interbed with formation properties being different on the two sides. The formation bond strength was increased on one side of the interbed and fracture extension was monitored. The results of both simulations showed how, by increasing formation strength equivalent to a tighter formation, the fracture extension ability reduces and the interbed containment capacity increases. The results were compared with some of the analytical models and good agreement was observed.


2014 ◽  
Vol 54 (1) ◽  
pp. 285
Author(s):  
Seyed Hassan Fallahzadeh Abarghooei ◽  
Vamegh Rasouli

In recent years, with the evolution of unconventional reservoirs, hydraulic fracturing has been applied to tight sandstone and shale formations to improve the hydrocarbon production. The application of hydraulic fracturing in cased boreholes is always associated with many difficulties because the fracture has to be initiated from the perforations. There have been many cases of improper fracture initiation in tight formations, which have then resulted in premature screen out, and have not improved reservoir production. In this study, initiation of hydraulic fracturing from a perforated tunnel was studied numerically using a finite element method. The numerical model was generated to represent a laboratory experimental test, which has been carried out on tight concrete cubic samples. A perforated wellbore in a linearly elastic tight formation was modelled using Abaqus software through three-dimensional numerical analysis. Two different perforation orientations were considered to analyse the fracture initiation pressure (FIP) and the location and initial direction of the crack. Different far field stresses were considered to study the effect of in-situ stresses and perforation directions on the fracture initiation mechanism. The results were then compared to laboratory and analytical outcomes, and good agreement was observed. The results provide a better understanding on how the stress regime, stress anisotropy, and perforation orientation could affect the pressure and geometry of fracture initiation in tight formations. Based on the outcomes of this study, better strategies can be decided for perforating a cased wellbore in a tight formation so that lower FIP is experienced and a better near wellbore fracture is created.


Author(s):  
Reza Barati

Injection of polymeric solutions, either as slick water or cross-linked fluids, in order to propagate a fracture and distribute proppants and keep the fracture open is a common practice in hydraulic fracturing of unconventional tight and ultra-tight formations. In addition to propagation of a main fracture, polymeric fluids will be invading the already existing network of micro-fractures and extending the network connected to the main fracture. Fluid loss into the matrix rock and micro-fractures is inevitable, so is the use of a comparable fluid loss additive to reduce the filtrate volume. Different classes of nanoparticles have been used by several researchers to carry different agents including surfactants and enzymes for hydraulic fracturing purposes. Nano-sized pores and micro-sized fractures in tight and ultra-tight formations require a nano to micro-sized fluid loss additive to improve propagation of the hydraulic fractures by efficiently reducing the fluid loss. In this study, application of silica and polyelectrolyte complex (PEC) nanoparticles as fluid loss additives for three sets of core plugs with permeability values within the 10−5 −10−4 mD, 0.01–0.1 mD and 1–40 mD range was investigated. The nano-sized material used in this study significantly reduced the fluid loss volume for the cores with permeability values below 0.1 mD when mixed only with 2% KCl or with low concentrations of guar polymer prepared in 2% KCl. Combination of the fluid loss additive application with chemical carrying application makes these nanoparticle systems a suitable package for hydraulic fracturing of tight and ultra-tight formations.


2020 ◽  
Vol 1 (1) ◽  
pp. 1
Author(s):  
Mia Ferian Helmi ◽  
Muhammad Zakiy Y. ◽  
Dinar Kaesti ◽  
Maulida Aulia Fadhina ◽  
Anisa Novia Risky

As time goes by, there will be a decline in formation productivity, as reflected in the decline in the rate of oil production from production wells. The decline in the rate of production was caused by many things such as a decrease in reservoir pressure, also formation damage. Where damage to the formation will result in a decrease in rock permeability. The decrease in rock permeability is caused by the blockage of rock pores due to the invasion of solids and drill mud filtrate, cementing, fluid fluids or previous stimulation. Besides the small rate of oil production can also be caused by the low natural permeability of rocks. With the decreasing productivity of the formation, it is necessary to make efforts to increase the productivity of the formation again, where one of them is by the method of hydraulic fracture stimulation. In this analysis, we will discuss the difference between conventional stimulation methods and flow channel fracturing. Flow channel fracturing is a fracturing process by making a network around proppant granules to form proppant pillar, so that a path is formed for the fluid to flow more easily. What distinguishes between conventional hydraulic fracturing with flow channel fracturing is the resulting fracture form, fracturing fluid injection pattern, and the amount of proppant used.


2013 ◽  
Vol 53 (1) ◽  
pp. 347 ◽  
Author(s):  
Mohammad Sarmadivaleh ◽  
Bahman Joodi ◽  
Amin Nabipour ◽  
Vamegh Rasouli

Several parameters are involved in a hydraulic-fracturing-operation, which is a technique used mainly in tight formations to enhance productivity. Formation properties, state of stresses in the field, injecting fluid characteristics, and pumping rate are among several parameters that can influence the process. Numerical analysis is conventionally run to simulate the hydraulic-fracturing process. Before operating the expensive fracturing job in the field, however, it would be useful to understand the effect of various parameters by conducting physical experiments in the lab. Laboratory experiments are also valuable for validating the numerical simulations. Applying the scaling laws, which are to correspond to the field operation with the test performed in the lab, are necessary to draw valid conclusions from the experiments. Dimensionless parameters are introduced through the scaling laws that are used to scale-down different parameters including the hole size, pump rate and fluid viscosity to that of the lab scale. Sample preparation and following a consistent and correct test procedure in the lab, however, are two other important factors that play a substantial role in obtaining valid results. The focus of this peer-reviewed paper is to address the latter aspect; however, a review of different scaling laws proposed and used will be given. The results presented in this study are the lab tests conducted using a true triaxial stress cell (TTSC), which allows simulation of hydraulic-fracturing under true field stress conditions where three independent stresses are applied to a cubic rock sample.


2015 ◽  
Author(s):  
E. Anthony ◽  
S. R. Al-mosaileekh ◽  
M. Al-Othman ◽  
N. B. Alhouti ◽  
M. Abdel-Basset ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document