Global Transformer Design Optimization (GTDO) using Harmony Search and FEM Technique

Author(s):  
Milad Yadollahi ◽  
Hamid Lesani
2015 ◽  
Vol 51 (3) ◽  
pp. 1-4 ◽  
Author(s):  
Helon Vicente Hultmann Ayala ◽  
Leandro Dos Santos Coelho ◽  
Viviana Cocco Mariani ◽  
Mauricio Valencia Ferreira Da Luz ◽  
Jean Vianei Leite

Author(s):  
Tamás Orosz ◽  
David Pánek ◽  
Pavel Karban

Since large power transformers are custom-made, and their design process is a labor-intensive task, their design process is split into different parts. In tendering, the price calculation is based on the preliminary design of the transformer. Due to the complexity of this task, it belongs to the most general branch of discrete, non-linear mathematical optimization problems. Most of the published algorithms are using a copper filling factor based winding model to calculate the main dimensions of the transformer during this first, preliminary design step. Therefore, these cost optimization methods are not considering the detailed winding layout and the conductor dimensions. However, the knowledge of the exact conductor dimensions is essential to calculate the thermal behaviour of the windings and make a more accurate stray loss calculation. The paper presents a novel, evolutionary algorithm-based transformer optimization method which can determine the optimal conductor shape for the windings during this examined preliminary design stage. The accuracy of the presented FEM method was tested on an existing transformer design. Then the results of the proposed optimization method have been compared with a validated transformer design optimization algorithm.


2015 ◽  
Vol 813-814 ◽  
pp. 1032-1036
Author(s):  
P. Sabarinath ◽  
M.R. Thansekhar ◽  
R. Jeganathan ◽  
R. Saravanan

Mechanical design engineers design products by selecting the best possible materials and geometries that satisfies the specific operational requirements of the design. It involves lot of creativity and aesthetics to make better designs. A gear design makes the designer to compromise many design variables so as to arrive the best performance of a gear set. The best possible way for multi variable, Multiobjective gear design is to try design optimization. For many complex engineering optimization problems multi objective design optimization methods are used to simplify the design problem. In this paper, multiobjective design of helical gear pair transmission with objective functions namely volume of the small and large helical gear and opposite number of overlap ratio is taken into account. The design variables considered are normal module, helix angle, gear width coefficient and teeth number of small helical gear. A recent meta-heuristic algorithm namely parameter adaptive harmony search algorithm is applied to solve this problem using the weighted sum approach. It is evident from the results that the proposed approach is performing better than other algorithms.


Sign in / Sign up

Export Citation Format

Share Document