scholarly journals FEM Based Preliminary Design Optimization in Case of Large Power Transformers

Author(s):  
Tamás Orosz ◽  
David Pánek ◽  
Pavel Karban

Since large power transformers are custom-made, and their design process is a labor-intensive task, their design process is split into different parts. In tendering, the price calculation is based on the preliminary design of the transformer. Due to the complexity of this task, it belongs to the most general branch of discrete, non-linear mathematical optimization problems. Most of the published algorithms are using a copper filling factor based winding model to calculate the main dimensions of the transformer during this first, preliminary design step. Therefore, these cost optimization methods are not considering the detailed winding layout and the conductor dimensions. However, the knowledge of the exact conductor dimensions is essential to calculate the thermal behaviour of the windings and make a more accurate stray loss calculation. The paper presents a novel, evolutionary algorithm-based transformer optimization method which can determine the optimal conductor shape for the windings during this examined preliminary design stage. The accuracy of the presented FEM method was tested on an existing transformer design. Then the results of the proposed optimization method have been compared with a validated transformer design optimization algorithm.

2020 ◽  
Vol 10 (4) ◽  
pp. 1361
Author(s):  
Tamás Orosz ◽  
David Pánek ◽  
Pavel Karban

Since large power transformers are custom-made, and their design process is a labor-intensive task, their design process is split into different parts. In tendering, the price calculation is based on the preliminary design of the transformer. Due to the complexity of this task, it belongs to the most general branch of discrete, non-linear mathematical optimization problems. Most of the published algorithms are using a copper filling factor based winding model to calculate the main dimensions of the transformer during this first, preliminary design step. Therefore, these cost optimization methods are not considering the detailed winding layout and the conductor dimensions. However, the knowledge of the exact conductor dimensions is essential to calculate the thermal behaviour of the windings and make a more accurate stray loss calculation. The paper presents a novel, evolutionary algorithm-based transformer optimization method which can determine the optimal conductor shape for the windings during this examined preliminary design stage. The accuracy of the presented FEM method was tested on an existing transformer design. Then the results of the proposed optimization method have been compared with a validated transformer design optimization algorithm.


Author(s):  
Masataka Yoshimura ◽  
Masahiko Taniguchi ◽  
Kazuhiro Izui ◽  
Shinji Nishiwaki

This paper proposes a design optimization method for machine products that is based on the decomposition of performance characteristics, or alternatively, extraction of simpler characteristics, to accommodate the specific features or difficulties of a particular design problem. The optimization problem is expressed using hierarchical constructions of the decomposed and extracted characteristics and the optimizations are sequentially repeated, starting with groups of characteristics having conflicting characteristics at the lowest hierarchical level and proceeding to higher levels. The proposed method not only effectively enables achieving optimum design solutions, but also facilitates deeper insight into the design optimization results, and aids obtaining ideas for breakthroughs in the optimum solutions. An applied example is given to demonstrate the effectiveness of the proposed method.


Author(s):  
Narasimha R. Nagaiah ◽  
Christopher D. Geiger

The design and development is a complex, repetitive, and more often difficult task, as design tasks comprising of restraining and conflicting relationships among design variables with more than one design objectives. Conventional methods for solving more than one objective optimization problems is to build one composite function by scalarizing the multiple objective functions into a single objective function with one solution. But, the disadvantages of conventional methods inspired scientists and engineers to look for different methods that result in more than one design solutions, also known as Pareto optimal solutions instead of one single solution. Furthermore, these methods not only involved in the optimization of more than one objectives concurrently but also optimize the objectives which are conflicting in nature, where optimizing one or more objective affects the outcome of other objectives negatively. This study demonstrates a nature-based and bio-inspired evolutionary simulation method that addresses the disadvantages of current methods in the application of design optimization. As an example, in this research, we chose to optimize the periodic segment of the cooling passage of an industrial gas turbine blade comprising of ribs (also known as turbulators) to enhance the cooling effectiveness. The outlined design optimization method provides a set of tradeoff designs to pick from depending on designer requirements.


Author(s):  
J. Gu ◽  
G. Y. Li ◽  
Z. Dong

Metamodeling techniques are increasingly used in solving computation intensive design optimization problems today. In this work, the issue of automatic identification of appropriate metamodeling techniques in global optimization is addressed. A generic, new hybrid metamodel based global optimization method, particularly suitable for design problems involving computation intensive, black-box analyses and simulations, is introduced. The method employs three representative metamodels concurrently in the search process and selects sample data points adaptively according to the values calculated using the three metamodels to improve the accuracy of modeling. The global optimum is identified when the metamodels become reasonably accurate. The new method is tested using various benchmark global optimization problems and applied to a real industrial design optimization problem involving vehicle crash simulation, to demonstrate the superior performance of the new algorithm over existing search methods. Present limitations of the proposed method are also discussed.


Author(s):  
Elena Sergeevna Reshetnikova ◽  
Irina Aleksandrovna Savelyeva ◽  
Ekaterina Anatolyevna Svistunova

The subject of research is the process of designing a conveyor belt. The authors consider parameterization in geometric modeling of parts and components of equipment and the creation of custom libraries in Compass 3D as a means of reducing the complexity and improving the quality of the design process. The preliminary design is the design stage of the development of design documentation and aims to determine the fundamental design solutions for a general idea of the device, operating principles and dimensions of the product. It is advisable to develop a preliminary design before the stage of developing a technical project and creating design documentation. Today, at all stages of work on the project, modern computer-aided design (CAD) systems are used, which not only accelerate the design process, but also make it possible to demonstrate to the customer the finished project at the stage of making technical decisions. This allows making timely changes in accordance with the requirements of the customer and to carry out high-quality preparation of the project for its implementation. The volume and time for further stages of work depend on the timing of the presentation of the preliminary design, therefore, the use of three-dimensional modeling parametrization in CAD is an effective way for designing engineering objects. Parameterization when working with 3D models allows you to get a set of typical product designs based on a once-created model by changing the set values of the variables, which significantly reduces the time spent on the project.


2020 ◽  
Vol 64 (3) ◽  
pp. 221-228
Author(s):  
Tamás Orosz ◽  
Zoltán Ádám Tamus

Since the electrical machine design is a complex task it can be divided into sub-problems, e.g. preliminary and final design processes and checking of the final design. This paper deals with the preliminary design process, which provides the key-design parameters of the electrical machine. Traditionally, these electrical machine models in preliminary design phase neglect or use oversimplified insulation system models and the tap changing selection is not involved during the calculation of key-design parameters. The aim of this study is to assess the effect of the insulation distance minimization and tap-changing on the key design parameters of a cost-optimized large power transformer. For this purpose, the paper shows some examples, where the cost optimal design — in contrast to the classical insulation design rule — contains larger insulation distances than the possible minimum values. The effect of tap-changing methods are also investigated. These cost optimization made by a verified, metaheuristic method-based transformer optimization algorithm. The results show involving the insulation design and tap-changing selection into the preliminary design process can provide more economical designs.


Author(s):  
Andreas Angersbach ◽  
Dieter Bestle ◽  
Ruud Eggels

The design of a modern aero-engine combustor is a highly complex and multi-disciplinary task. The combustor design is strongly driven by severe emission regulations and ACARE 2020/2050 goals. Furthermore, new designs have to be developed within short turn-around times. This paper describes a novel approach of an automated preliminary aero-thermal design process of a rich-burn combustor combining 1D, 2D and 3D design tools in order to speed up the design loop and provide improved combustor designs in an early design stage. The automated design process includes a knowledge-based preliminary design tool, an 1D network solver, a parametric 3D geometry model, a meshing tool, and 3D-CFD analysis. At first, a preliminary combustor design is created based on industrial in-house design rules. The preliminary design tool provides a 2D geometry model and cooling layout. It is coupled with an 1D network solver to calculate the air distribution inside the combustor. The design process includes two state-of-the-art combustor cooling schemes, effusion cooling and impingement effusion cooling. An air flow model for both cooling schemes is created within the network, respectively. The computed air distribution is subsequently used to generate boundary conditions for a 3D-CFD analysis. To perform the CFD calculations, a parametric 3D geometry model of a combustor sector has been developed based on a 2D preliminary design which takes into account mixing port properties, fuel injector, and combustor wall cooling. After an automated meshing 3D-CFD computations are performed. As a result, quick automatic estimation of combustor emissions, size and efficiency can be obtained within the design process. A CFD parameter study of a mixing port variation and their effect on the emissions of NOx and soot is performed using the described layout process.


Author(s):  
Youwei He ◽  
Jinju Sun ◽  
Peng Song ◽  
Xuesong Wang ◽  
Da Xu

A preliminary design optimization approach of axial flow compressors is developed. Loss correlations associated with airfoil geometry are introduced to relax the stringent requirement for the designer to prescribe the stage efficiency. In face of the preliminary design complexity resulted from the large number of design variables together with their stringent variation ranges and multiple design goals, the multi-objective optimization algorithm is incorporated. With such a developed preliminary design optimization method, the design space can be then explored extensively and the optimum designs of both high level overall efficiency and wide stall margin can be readily achieved. The preliminary design optimization method is validated in two steps. Firstly, an existing 5-stage compressor is redesigned without optimization. The obtained geometries and flow parameters are compared to the existing data and a good consistency is achieved. Then, the redesigned compressor is used as initial design and optimized by the developed multi-objective preliminary design optimization method, and significant performance gains are obtained, which demonstrates the effectiveness of the developed optimization methods.


2017 ◽  
Vol 61 (1) ◽  
pp. 69-76 ◽  
Author(s):  
Tamás Orosz ◽  
Bence Borbély ◽  
Zoltán Ádám Tamus

Large power transformers are regarded as crucial and expensive assets in power systems. Due to the competing global market, to make a good and competing power transformer design, a non-linear optimization problem should be solved in a very short time in the preliminary design stage. The paper shows and compares the performance of four different methods to solve this problem for three phase core type power transformers. The first algorithm is a novel meta-heuristic technique which combines the geometric programming with the method of branch and bound. Then this conventional multi design method is solved by a simple iterative technique and two novel evolutionary algorithms to enhance the convergence speed. One of these algorithms is the particle swarm optimization technique which is used by many other researchers and the grey wolf optimization algorithm which is a new method in this optimization sub-problem. An example design on an 80 MVA, three phase core type power transformer using these four methods is presented and its performances are analyzed. The results demonstrate that the grey wolf optimization is a good alternative for this optimization problem.


Sign in / Sign up

Export Citation Format

Share Document