Void Formation Induced by the Divergence of the Diffusive Ionic Fluxes in Metal Oxides Under Chemical Potential Gradients

2010 ◽  
Vol 47 (1) ◽  
pp. 8-18 ◽  
Author(s):  
Toshio Maruyama ◽  
Mitsutoshi Ueda
2020 ◽  
pp. 1-20
Author(s):  
Vedanta Adak ◽  
Upama Dutta

Abstract Partial equilibrium textures such as corona provide information on changing pressure–temperature (P-T) conditions experienced by a rock during its geological evolution. Coronae layers may form in single or multiple stages; understanding the genesis of each layer is necessary to correctly extract information regarding the physicochemical conditions experienced by the rock. Mafic rocks from SE Chotanagpur Granite Gneissic Complex, India, show the presence of multi-layered coronae at olivine–plagioclase contact with the mineral sequence: olivine | orthopyroxene | amphibole + spinel | plagioclase. Textural studies indicate that the coronae formed during metamorphism in a single stage due to a reaction between olivine and plagioclase. Reaction modelling shows that the corona formation occurred in an open system and experienced a minor volume loss. Pseudosection modelling and thermobarometry suggest that the P-T conditions related to corona formation are 860 ± 50°C and 7 ± 0.5 kbar. A μMgO-μCaO diagram shows that the layers in coronae formed in response to chemical potential gradients between the reactant minerals. A combination of field observations and the P-T conditions of coronae formation suggest a fluid-driven metamorphism. Correlation with extant geological information indicates that the corona-forming event is possibly related to the accretion of India and Antarctica during the assembly of Rodinia.


1985 ◽  
Vol 68 (1) ◽  
pp. 1-6 ◽  
Author(s):  
TAKUMA ISHIKAWA ◽  
HIROSHI SATO ◽  
RYOICHI KIKUCHI ◽  
S. A. AKBAR

2009 ◽  
Vol 289-292 ◽  
pp. 1-13 ◽  
Author(s):  
Toshio Maruyama ◽  
Mitsutoshi Ueda ◽  
Kenichi Kawamura

Voids are frequently generated and dispersed in oxide scales formed in high temperature oxidation of metals. The divergence of ionic flux may play an important role in the void formation in a growing scale. Kinetic equations were derived for describing chemical potential distribution, ionic fluxes and their divergence in the scale. The divergence was found to be the measure of void formation. Defect chemistry in scales is directly related to the sign of divergence and gives an indication of the void formation behavior. The quantitative estimation on the void formation was successfully applied to a growing magnetite scale in high temperature oxidation of iron at 823 K.


Solid Earth ◽  
2017 ◽  
Vol 8 (1) ◽  
pp. 93-135 ◽  
Author(s):  
Paula Ogilvie ◽  
Roger L. Gibson

Abstract. Coronas, including symplectites, provide vital clues to the presence of arrested reaction and preservation of partial equilibrium in metamorphic and igneous rocks. Compositional zonation across such coronas is common, indicating the persistence of chemical potential gradients and incomplete equilibration. Major controls on corona mineralogy include prevailing pressure (P), temperature (T) and water activity (aH2O) during formation, reaction duration (t) single-stage or sequential corona layer growth; reactant bulk compositions (X) and the extent of metasomatic exchange with the surrounding rock; relative diffusion rates for major components; and/or contemporaneous deformation and strain. High-variance local equilibria in a corona and disequilibrium across the corona as a whole preclude the application of conventional thermobarometry when determining P–T conditions of corona formation, and zonation in phase composition across a corona should not be interpreted as a record of discrete P–T conditions during successive layer growth along the P–T path. Rather, the local equilibria between mineral pairs in corona layers more likely reflect compositional partitioning of the corona domain during steady-state growth at constant P and T. Corona formation in pelitic and mafic rocks requires relatively dry, residual bulk rock compositions. Since most melt is lost along the high-T prograde to peak segment of the P–T path, only a small fraction of melt is generally retained in the residual post-peak assemblage. Reduced melt volumes with cooling limit length scales of diffusion to the extent that diffusion-controlled corona growth occurs. On the prograde path, the low melt (or melt-absent) volumes required for diffusion-controlled corona growth are only commonly realized in mafic igneous rocks, owing to their intrinsic anhydrous bulk composition, and in dry, residual pelitic compositions that have lost melt in an earlier metamorphic event. Experimental work characterizing rate-limiting reaction mechanisms and their petrogenetic signatures in increasingly complex, higher-variance systems has facilitated the refinement of chemical fractionation and partial equilibration diffusion models necessary to more fully understand corona development. Through the application of quantitative physical diffusion models of coronas coupled with phase equilibria modelling utilizing calculated chemical potential gradients, it is possible to model the evolution of a corona through P–T–X–t space by continuous, steady-state and/or sequential, episodic reaction mechanisms. Most coronas in granulites form through a combination of these endmember reaction mechanisms, each characterized by distinct textural and chemical potential signatures with very different petrogenetic implications. An understanding of the inherent petrogenetic limitations of a reaction mechanism model is critical if an appropriate interpretation of P–T evolution is to be inferred from a corona. Since corona modelling employing calculated chemical potential gradients assumes nothing about the sequence in which the layers form and is directly constrained by phase compositional variation within a layer, it allows far more nuanced and robust understanding of corona evolution and its implications for the path of a rock in P–T–X space.


Sign in / Sign up

Export Citation Format

Share Document