scholarly journals Task-Scheduling Based on Multi-Objective Particle Swarm Optimization in Spatial Crowdsourcing

Author(s):  
Afra A. Alabbadi and Maysoon F. Abulkhair Afra A. Alabbadi and Maysoon F. Abulkhair

As a result of the rapid growth of internet and smartphone technology, a novel platform that attracts individuals and groups known as crowdsourcing emerged. Crowdsourcing is an outsourcing platform that facilitates the accomplishment of costly tasks that consume long periods of time when traditional methods are used. Spatial crowdsourcing (SC) is based on location; it introduces a new framework for the physical world that enables a crowd to complete spatialtemporal tasks. The primary issue in SC is the assignment and scheduling of a set of available tasks to a set of proper workers based on different factors, such as the location of the task, the distance between task location and hired worker location, temporal conditions, and incentive rewards. In the real-world, SC applications need to optimize multi-objectives simultaneously to exploit the utility of SC, and these objectives can be in conflict. However, there are few studies that address this multi-objective optimization problem within a SC environment. Thus, the authors propose a multi-objective task scheduling optimization problem in SC that aims to maximize the number of completed tasks, minimize total travel cost, and ensure worker workload balance. To solve this problem, we developed a method that adapts the multi-objective particle swarm optimization (MOPSO) algorithm based on a proposed novel fitness function. The experiments were conducted with both synthetic and real datasets; the experimental results show that this approach provides acceptable initial results. As future work, we plan to improve the effectiveness of our proposed algorithm by integrating a simple ranking strategy based on task entropy and expected travel costs to enhance MOPSO performance.

2020 ◽  
Vol 9 (4) ◽  
pp. 243 ◽  
Author(s):  
Hua Wang ◽  
Wenwen Li ◽  
Wei Huang ◽  
Ke Nie

The delimitation of permanent basic farmland is essentially a multi-objective optimization problem. The traditional demarcation methods cannot simultaneously take into account the requirements of cultivated land quality and the spatial layout of permanent basic farmland, and it cannot balance the relationship between agriculture and urban development. This paper proposed a multi-objective permanent basic farmland delimitation model based on an immune particle swarm optimization algorithm. The general rules for delineating the permanent basic farmland were defined in the model, and the delineation goals and constraints have been formally expressed. The model introduced the immune system concepts to complement the existing theory. This paper describes the coding and initialization methods for the algorithm, particle position and speed update mechanism, and fitness function design. We selected Xun County, Henan Province, as the research area and set up control experiments that aligned with the different targets and compared the performance of the three models of particle swarm optimization (PSO), artificial immune algorithm (AIA), and the improved AIA-PSO in solving multi-objective problems. The experiments proved the feasibility of the model. It avoided the adverse effects of subjective factors and promoted the scientific rationality of the results of permanent basic farmland delineation.


2014 ◽  
Vol 971-973 ◽  
pp. 1242-1246
Author(s):  
Tie Jun Chen ◽  
Yan Ling Zheng

The mineral grinding process is a typical constrained multi-objective optimization problem for its two main goals are quality and quantity. This paper established a similarity criterion mathematical model and combined Multi-objective Dynamic Multi-Swarm Particle Swarm Optimization with modified feasibility rule to optimize the two goals. The simulation results showed that the results of high quality were achieved and the Pareto frontier was evenly distributed and the proposed approach is efficient to solve the multi-objective problem for the mineral grinding process.


2021 ◽  
Vol 22 (9) ◽  
pp. 4408
Author(s):  
Cheng-Peng Zhou ◽  
Di Wang ◽  
Xiaoyong Pan ◽  
Hong-Bin Shen

Protein structure refinement is a crucial step for more accurate protein structure predictions. Most existing approaches treat it as an energy minimization problem to intuitively improve the quality of initial models by searching for structures with lower energy. Considering that a single energy function could not reflect the accurate energy landscape of all the proteins, our previous AIR 1.0 pipeline uses multiple energy functions to realize a multi-objectives particle swarm optimization-based model refinement. It is expected to provide a general balanced conformation search protocol guided from different energy evaluations. However, AIR 1.0 solves the multi-objective optimization problem as a whole, which could not result in good solution diversity and convergence on some targets. In this study, we report a decomposition-based method AIR 2.0, which is an updated version of AIR, for protein structure refinement. AIR 2.0 decomposes a multi-objective optimization problem into a number of subproblems and optimizes them simultaneously using particle swarm optimization algorithm. The solutions yielded by AIR 2.0 show better convergence and diversity compared to its previous version, which increases the possibilities of digging out better structure conformations. The experimental results on CASP13 refinement benchmark targets and blind tests in CASP 14 demonstrate the efficacy of AIR 2.0.


2013 ◽  
Vol 722 ◽  
pp. 550-556
Author(s):  
Xiao Mo Yu ◽  
Ai Ling Qin ◽  
Jia Hai Xue ◽  
Jun Ke Ye ◽  
Wen Jing Zhou

In this paper, the forming process is applied to the structure design of the metal bellows for the synergistic optimization.With bellows minimum overall stiffness and minimum weight for the optimization objectives to establish multi-objective optimization design model, using the Maximin fitness function strategy based multi-objective particle swarm optimization algorithm and introduce the multiple subgroup cooperative search strategy by master-slave clustering to get the optimized solution at the same time. The algorithm is applied to the synergistic optimization of the metal bellows structure design. The results show that the convergent speed of the algorithm is fast and can effectively approximate the actual bellows structure design, and provide users with more practical and intuitive effectively design scheme.


Sign in / Sign up

Export Citation Format

Share Document