Estimation of Data-Driven Polynomial Chaos using Hybrid Evolution Strategies

Author(s):  
M.D. Spiridonakos ◽  
V.K. Dertimanis ◽  
E.N. Chatzi
2017 ◽  
Vol 50 (2) ◽  
pp. 273-292 ◽  
Author(s):  
Fenggang Wang ◽  
Fenfen Xiong ◽  
Huan Jiang ◽  
Jianmei Song

2014 ◽  
Vol 14 (11) ◽  
pp. 2951-2973 ◽  
Author(s):  
M. C. Rochoux ◽  
S. Ricci ◽  
D. Lucor ◽  
B. Cuenot ◽  
A. Trouvé

Abstract. This paper is the first part in a series of two articles and presents a data-driven wildfire simulator for forecasting wildfire spread scenarios, at a reduced computational cost that is consistent with operational systems. The prototype simulator features the following components: an Eulerian front propagation solver FIREFLY that adopts a regional-scale modeling viewpoint, treats wildfires as surface propagating fronts, and uses a description of the local rate of fire spread (ROS) as a function of environmental conditions based on Rothermel's model; a series of airborne-like observations of the fire front positions; and a data assimilation (DA) algorithm based on an ensemble Kalman filter (EnKF) for parameter estimation. This stochastic algorithm partly accounts for the nonlinearities between the input parameters of the semi-empirical ROS model and the fire front position, and is sequentially applied to provide a spatially uniform correction to wind and biomass fuel parameters as observations become available. A wildfire spread simulator combined with an ensemble-based DA algorithm is therefore a promising approach to reduce uncertainties in the forecast position of the fire front and to introduce a paradigm-shift in the wildfire emergency response. In order to reduce the computational cost of the EnKF algorithm, a surrogate model based on a polynomial chaos (PC) expansion is used in place of the forward model FIREFLY in the resulting hybrid PC-EnKF algorithm. The performance of EnKF and PC-EnKF is assessed on synthetically generated simple configurations of fire spread to provide valuable information and insight on the benefits of the PC-EnKF approach, as well as on a controlled grassland fire experiment. The results indicate that the proposed PC-EnKF algorithm features similar performance to the standard EnKF algorithm, but at a much reduced computational cost. In particular, the re-analysis and forecast skills of DA strongly relate to the spatial and temporal variability of the errors in the ROS model parameters.


2020 ◽  
Vol 62 (4) ◽  
pp. 2131-2147
Author(s):  
Qizhang Lin ◽  
Fenfen Xiong ◽  
Fenggang Wang ◽  
Xin Yang

2014 ◽  
Vol 2 (5) ◽  
pp. 3289-3349 ◽  
Author(s):  
M. C. Rochoux ◽  
S. Ricci ◽  
D. Lucor ◽  
B. Cuenot ◽  
A. Trouvé

Abstract. This paper is the first part in a series of two articles and presents a data-driven wildfire simulator for forecasting wildfire spread scenarios, at a reduced computational cost that is consistent with operational systems. The prototype simulator features the following components: a level-set-based fire propagation solver FIREFLY that adopts a regional-scale modeling viewpoint, treats wildfires as surface propagating fronts, and uses a description of the local rate of fire spread (ROS) as a function of environmental conditions based on Rothermel's model; a series of airborne-like observations of the fire front positions; and a data assimilation algorithm based on an ensemble Kalman filter (EnKF) for parameter estimation. This stochastic algorithm partly accounts for the non-linearities between the input parameters of the semi-empirical ROS model and the fire front position, and is sequentially applied to provide a spatially-uniform correction to wind and biomass fuel parameters as observations become available. A wildfire spread simulator combined with an ensemble-based data assimilation algorithm is therefore a promising approach to reduce uncertainties in the forecast position of the fire front and to introduce a paradigm-shift in the wildfire emergency response. In order to reduce the computational cost of the EnKF algorithm, a surrogate model based on a polynomial chaos (PC) expansion is used in place of the forward model FIREFLY in the resulting hybrid PC-EnKF algorithm. The performance of EnKF and PC-EnKF is assessed on synthetically-generated simple configurations of fire spread to provide valuable information and insight on the benefits of the PC-EnKF approach as well as on a controlled grassland fire experiment. The results indicate that the proposed PC-EnKF algorithm features similar performance to the standard EnKF algorithm, but at a much reduced computational cost. In particular, the re-analysis and forecast skills of data assimilation strongly relate to the spatial and temporal variability of the errors in the ROS model parameters.


Sign in / Sign up

Export Citation Format

Share Document