fire front
Recently Published Documents


TOTAL DOCUMENTS

132
(FIVE YEARS 40)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 7 ◽  
Author(s):  
Jan C. Thomas ◽  
Eric V. Mueller ◽  
Michael R. Gallagher ◽  
Kenneth L. Clark ◽  
Nicholas Skowronski ◽  
...  

The hazards associated with firebrands have been well documented. However, there exist few studies that allow for the hazard from a given fire to be quantified. To develop predictive tools to evaluate this hazard, it is necessary to understand the conditions that govern firebrand generation and those that affect firebrand deposition. A method is presented that allows for time-resolved measurements of fire behavior to be related to the dynamics of firebrand deposition. Firebrand dynamics were recorded in three fires undertaken in two different ecosystems. Fire intensity is shown to drive firebrand generation and firebrand deposition—higher global fire intensities resulting in the deposition of more, larger firebrands at a given distance from the fire front. Local firebrand dynamics are also shown to dominate the temporal firebrand deposition with periods of high fire intensity within a fire resulting in firebrand shower at deposition sites at times commensurate with firebrand transport. For the range of conditions studied, firebrand deposition can be expected up to 200 m ahead of the fire line based on extrapolation from the measurements.


2021 ◽  
Vol 13 (23) ◽  
pp. 4913
Author(s):  
Ronan Paugam ◽  
Martin J. Wooster ◽  
William E. Mell ◽  
Mélanie C. Rochoux ◽  
Jean-Baptiste Filippi ◽  
...  

To pursue the development and validation of coupled fire-atmosphere models, the wildland fire modeling community needs validation data sets with scenarios where fire-induced winds influence fire front behavior, and with high temporal and spatial resolution. Helicopter-borne infrared thermal cameras have the potential to monitor landscape-scale wildland fires at a high resolution during experimental burns. To extract valuable information from those observations, three-step image processing is required: (a) Orthorectification to warp raw images on a fixed coordinate system grid, (b) segmentation to delineate the fire front location out of the orthorectified images, and (c) computation of fire behavior metrics such as the rate of spread from the time-evolving fire front location. This work is dedicated to the first orthorectification step, and presents a series of algorithms that are designed to process handheld helicopter-borne thermal images collected during savannah experimental burns. The novelty in the approach lies on its recursive design, which does not require the presence of fixed ground control points, hence relaxing the constraint on field of view coverage and helping the acquisition of high-frequency observations. For four burns ranging from four to eight hectares, long-wave and mid infra red images were collected at 1 and 3 Hz, respectively, and orthorectified at a high spatial resolution (<1 m) with an absolute accuracy estimated to be lower than 4 m. Subsequent computation of fire radiative power is discussed with comparison to concurrent space-borne measurements.


Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 81
Author(s):  
Henry Hart ◽  
Daniel D. B. Perrakis ◽  
Stephen W. Taylor ◽  
Christopher Bone ◽  
Claudio Bozzini

In this study, we investigate a novel application of the photogrammetric monoplotting technique for assessing wildfires. We demonstrate the use of the software program WSL Monoplotting Tool (MPT) to georeference operational oblique aerial wildfire photographs taken during airtanker response in the early stages of fire growth. We located the position of the fire front in georeferenced pairs of photos from five fires taken 31–118 min apart, and calculated the head fire spread distance and head fire rate of spread (HROS). Our example photos were taken 0.7 to 4.7 km from fire fronts, with camera angles of incidence from −19 to −50° to image centre. Using high quality images with detailed landscape features, it is possible to identify fire front positions with high precision; in our example data, the mean 3D error was 0.533 m and the maximum 3D error for individual fire runs was less than 3 m. This resulted in a maximum HROS error due to monoplotting of only ~0.5%. We then compared HROS estimates with predictions from the Canadian Fire Behavior Prediction System, with differences mainly attributed to model error or uncertainty in weather and fuel inputs. This method can be used to obtain observations to validate fire spread models or create new empirical relationships where databases of such wildfire photos exist. Our initial work suggests that monophotogrammetry can provide reproducible estimates of fire front position, spread distance and rate of spread with high accuracy, and could potentially be used to characterize other fire features such as flame and smoke plume dimensions and spotting.


2021 ◽  
Vol 21 (10) ◽  
pp. 3141-3160
Author(s):  
Jeffrey Katan ◽  
Liliana Perez

Abstract. Wildfires are a complex phenomenon emerging from interactions between air, heat, and vegetation, and while they are an important component of many ecosystems’ dynamics, they pose great danger to those ecosystems, as well as human life and property. Wildfire simulation models are an important research tool that help further our understanding of fire behaviour and can allow experimentation without recourse to live fires. Current fire simulation models fit into two general categories: empirical models and physical models. We present a new modelling approach that uses agent-based modelling to combine the complexity possible with physical models with the ease of computation of empirical models. Our model represents the fire front as a set of moving agents that respond to, and interact with, vegetation, wind, and terrain. We calibrate the model using two simulated fires and one real fire and validate the model against another real fire and the interim behaviour of the real calibration fire. Our model successfully replicates these fires, with a figure of merit on par with simulations by the Prometheus simulation model. Our model is a stepping-stone in using agent-based modelling for fire behaviour simulation, as we demonstrate the ability of agent-based modelling to replicate fire behaviour through emergence alone.


Fire ◽  
2021 ◽  
Vol 4 (4) ◽  
pp. 69
Author(s):  
Daryn Sagel ◽  
Kevin Speer ◽  
Scott Pokswinski ◽  
Bryan Quaife

Most wildland and prescribed fire spread occurs through ground fuels, and the rate of spread (RoS) in such environments is often summarized with empirical models that assume uniform environmental conditions and produce a unique RoS. On the other hand, representing the effects of local, small-scale variations of fuel and wind experienced in the field is challenging and, for landscape-scale models, impractical. Moreover, the level of uncertainty associated with characterizing RoS and flame dynamics in the presence of turbulent flow demonstrates the need for further understanding of fire dynamics at small scales in realistic settings. This work describes adapted computer vision techniques used to form fine-scale measurements of the spatially and temporally varying RoS in a natural setting. These algorithms are applied to infrared and visible images of a small-scale prescribed burn of a quasi-homogeneous pine needle bed under stationary wind conditions. A large number of distinct fire front displacements are then used statistically to analyze the fire spread. We find that the fine-scale forward RoS is characterized by an exponential distribution, suggesting a model for fire spread as a random process at this scale.


2021 ◽  
pp. 103475
Author(s):  
Aurélien Costes ◽  
Mélanie C. Rochoux ◽  
Christine Lac ◽  
Valéry Masson
Keyword(s):  

2021 ◽  
Author(s):  
Volodymyr Sherstjuk ◽  
Maryna Zharikova ◽  
Irina Dorovskaja ◽  
Dmytro Chornyi ◽  
Victor Gusev ◽  
...  
Keyword(s):  

2021 ◽  
Vol 4 (2) ◽  
pp. 1-15
Author(s):  
N.V. Baranovskiy ◽  
◽  
D. S. Menshikov ◽  

It is necessary to develop quantitative methods to assess the formation of thermal burns in the morphological parts of coniferous trees. The purpose of the study can be formulated as follows: mathematical modeling of heat transfer in the layered structure of a coniferous tree branch under the influence of a forest fire front. The heat propagation in the “branch-needles-flame zone” system is described by a system of non-stationary differential equations of heat conduction with the corresponding initial and boundary conditions. As an object of research, a digital model of a branch of a coniferous tree for various species, namely, pine, larch and fir, was used. Temperature distributions are obtained for different variants of the branch structure and conditions of the impact of the forest fire front. Conclusions are made about the need for further modernization of the mathematical model. The developed model is the basis for creating software tools for specialized geographic information systems.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1014
Author(s):  
Bryan Quaife ◽  
Kevin Speer

A model is developed to explore fire–atmosphere interactions due to the convective sink and vorticity sources in a highly simplified and idealized form, in order to examine their effect on spread and the stability of various fire front geometries. The model is constructed in a cellular automata framework, is linear, and represents a background flow, convective sink, and vortices induced by the fire plume at every burning cell. We use standard techniques to solve the resulting Poisson equations with careful attention to the boundary conditions. A modified Bresenham algorithm is developed to represent convection. The three basic flow types—large-scale background flow, sink flow, and vortex circulation—interact in a complex fashion as the geometry of the fire evolves. Fire-generated vortex–sink interactions produce a range of fire behavior, including unsteady spread rate, lateral spreading, and dynamic fingering. In this simplified framework, pulsation is found associated with evolving fire-line width, a fire-front acceleration in junction fires, and the breakup of longer initial fire lines into multiple head fires. Fuel is very simply represented by a single burn time parameter. The model fuel is uniform yet patchiness occurs due to a dynamic interaction of diffusive and convective effects. The interplay of fire-induced wind and the geometry of the fire front depends also on the fuel burn time.


Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 956
Author(s):  
Warren E. Heilman ◽  
Kenneth L. Clark ◽  
Xindi Bian ◽  
Joseph J. Charney ◽  
Shiyuan Zhong ◽  
...  

Atmospheric turbulent circulations in the vicinity of wildland fire fronts play an important role in the transfer of momentum into and out of combustion zones, which in turn can potentially affect the behavior and spread of wildland fires. The vertical turbulent transfer of momentum is accomplished via individual sweep, ejection, outward interaction, and inward interaction events, collectively known as sweep-ejection dynamics. This study examined the sweep-ejection dynamics that occurred before, during, and after the passage of a surface fire front during a prescribed fire experiment conducted in an open-canopied forest in the New Jersey Pine Barrens. High-frequency (10 Hz), tower-based, sonic anemometer measurements of horizontal and vertical wind velocity components in the vicinity of the fire front were used to assess the relative frequencies of occurrence of the different types of momentum-flux events, their contributions to the overall momentum fluxes, and their periodicity patterns. The observational results suggest that the presence of surface fire fronts in open-canopied forests can substantially change the sweep-ejection dynamics that typically occur when fires are not present. In particular, sweep events resulting in the downward transport of high horizontal momentum air from above were found to be more prominent during fire-front-passage periods.


Sign in / Sign up

Export Citation Format

Share Document