A Nonlinear Finite Element Program with Adaptive Mesh Refinement for a MIMD Parallel Computer

Author(s):  
E. Stein ◽  
O. Klaas ◽  
R. Niekamp
1997 ◽  
Vol 81 (8) ◽  
pp. 4082-4084 ◽  
Author(s):  
K. M. Tako ◽  
T. Schrefl ◽  
M. A. Wongsam ◽  
R. W. Chantrell

1995 ◽  
Vol 117 (2) ◽  
pp. 377-383 ◽  
Author(s):  
V. K. Arya ◽  
G. R. Halford

The feasibility of a viscoplastic model incorporating two back stresses and a drag strength is investigated for performing nonlinear finite element analyses of structural engineering problems. The model has recently been put forth by Freed and Walker. The feasibility of the viscoplastic model is demonstrated for nonlinear structural analyses by implementing the model into a finite element program and performing nonlinear finite element analyses for several uniaxial and multiaxial problems. Good agreement is shown to exist between the results obtained using the finite element implementation and those obtained experimentally. The advantages of using advanced viscoplastic models for performing nonlinear finite element analyses of structural components are indicated.


Author(s):  
Jianhu Nie ◽  
Yitung Chen ◽  
David A. Hopkins ◽  
Lijian Sun ◽  
Hsuan-Tsung Hsieh

A finite element program with h-type mesh adaptation is developed and several test cases for heat transfer, fluid mechanics and structural mechanics are selected for code validations. The element division method is used because of its advantage of avoiding overly twisted elements during mesh refinement and recovery. The adaptive mesh is refined only in the localization region where the feature gradient is high. The overall mesh refinement and the h-adaptive mesh refinement are justified with respect to the computational accuracy and the CPU time cost. Both can improve the computational accuracy. The overall mesh refinement causes the CPU time to greatly increase. However, the CPU time does not increase very much with the increase of the level of h-adaptive mesh refinement. The CPU time cost can be saved using the developed program by orders of magnitude, especially for the system with a large number of elements and nodes.


Sign in / Sign up

Export Citation Format

Share Document