Numerical Analysis of In-plane Performance of Unreinforced Masonry Walls Retrofitted with Fiber Reinforced Polymers

Author(s):  
M.Z. Kabir ◽  
M. Farrin
2017 ◽  
Vol 742 ◽  
pp. 723-731 ◽  
Author(s):  
Christian Oblinger ◽  
André Baeten ◽  
Klaus Drechsler

Fiber reinforced polymers (FRP) are used in a widespread range, for example in aerospace, mobility or wind energy applications due to their excellent quality profile. Moreover, rotating machine elements, which are applied in dynamic processes, require a primarily high stiffness combined with an elastic behavior. Novel FRP components or modern hybrid structures lead to a lower energy consumption of the entire mechanical system. In this respect, a shaft coupling between two shafts depicts an exemplary machine element for a possible application of FRP. This paper deals with the numerical analysis on the structural behavior of a non-engaging bellows coupling made of prepreg-based carbon fiber reinforced polymers (CFRP) for propulsion technology. The presented concept is based on the methodological construction approach for the fulfillment of the compensation and connection functionality. A very high torsional stiffness as well as a certain bending flexibility of the whole coupling geometry is required due to the connection of two torsion-loaded structures. Specific geometrical design variables could be identified with the finite elements method (FEM) and the design of experiments (DoE), which have a significant influence on the structure mechanical behavior of the CFRP bellows coupling. Based on a variable identification scheme according to Shainin, the influence of various geometrical design factors on the structural performance of the CFRP bellows coupling was evaluated.


2013 ◽  
Vol 9 (3) ◽  
pp. 32-39 ◽  
Author(s):  
Viorel Popa ◽  
Radu Pascu ◽  
Andrei Papurcu

Abstract Masonry buildings represent the most vulnerable part of the building stock to seismic action in Romania. The main goal of this experimental research program is to investigate the efficiency of several retrofitting solutions using fiber reinforced polymers. Research focused on the lateral strength and displacement capacity of the retrofitted specimens. The masonry walls were built using solid bricks. Glass or carbon fiber reinforced polymers (GFRP or CFRP) embedded in a fiber reinforced mortar layer were used for jacketing. Seven specimens having essentially 25cm width, 1,75m height and 2,10m length were tested in the experimental research program. These specimens were subjected to a constant vertical compressive stress of 1,2MPa. A quasi-static load protocol was considered for the horizontal loading. This paper presents the layout of the experimental research program and some preliminary results.


2013 ◽  
Vol 48 (5) ◽  
pp. 737-755 ◽  
Author(s):  
H. Orhun Koksal ◽  
Oktay Jafarov ◽  
Bilge Doran ◽  
Selen Aktan ◽  
Cengiz Karakoc

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Lucas Lantz ◽  
Joshua Maynez ◽  
Wesley Cook ◽  
Claudia Mara Dias Wilson

The recent rise of terrorist attacks has reinforced the need for mitigation of damage caused by blast loading on unreinforced masonry walls. The primary goal of the techniques is to prevent the loss of life while simultaneously preserving the integrity of the structure. This paper presents a compilation of recently available literature on blast protection of unreinforced masonry walls. It seeks to present the state of the art in this field, including mitigation techniques considered as well as testing methods selected. Fiber reinforced polymers and polyurea are the two dominant retrofitting techniques being assessed in the field. Other techniques include but are not limited to polyurethane, steel sheets, and aluminum foam. Since there is no widely implemented standard for blast loading test procedures, direct comparisons between the efficiencies of the mitigation techniques proposed are not always feasible. Although fragmentation is an indicator of the efficiency of retrofits, it is currently measured by subjective observation of postblast debris.


Sign in / Sign up

Export Citation Format

Share Document