Rheology and Simulation of Self Compacting Concrete Flow

Author(s):  
B. Patzák ◽  
L.N. Thrane ◽  
F. Kolarík

With the appearance of Self-Compacting Concrete (SCC) that streams uninhibitedly, under the sole impact of gravity, the desire for issue free and unsurprising castings even in complex cases, spurged the recreation of solid stream as a way to demonstrate and anticipate solid functionality. To accomplish total and dependable structure loading up with smooth surfaces of the solid, the fortified formwork geometry must be perfect with the rheology of the new SCC. Anticipating stream conduct in the formwork and connecting the required rheological parameters to stream tests performed on the site will guarantee an improvement of the throwing procedure. In this theory, numerical reproduction of solid stream is explored, utilizing both discrete just as constant approaches. The discrete molecule model here fills in as a way to mimic subtleties and marvels concerning totals demonstrated as individual items. The here gave cases are reenacted round particles. Be that as it may, it is conceivable to utilize nonspherical particles too. Total surface harshness, size and viewpoint proportion might be modeles by molecule erosion, size and bunching a few circles into framing the ideal molecule shape. The consistent methodology has been utilized to mimic huge volumes of cement. The solid is displayed as a homogeneous material, specific impacts of totals, for example, blocking or isolation are not represented. Great correspondence was accomplished with a Bingham material model used to reenact solid research center tests (for example droop stream, L-box) and structure filling. Stream of cement in an especially clogged segment of a twofold tee chunk just as two lifts of a multi-layered full scale divider throwing were reenactedsucessfully. A huge scale quantitative investigation is performed rather easily with the constant methodology. Littler scale subtleties and marvels are better caught subjectively with the discrete molecule approach. As PC speed and limit always develops, recreation detail and test volume will be permitted to increment. A future converging of the homogeneous liquid model with the molecule way to deal with structure particles in the liquid will highlight the progression of concrete as the physical suspension that it speaks to. One single ellipsoidal molecule falling in a Newtonian liquid was considered as an initial step.


2018 ◽  
Vol 2018 ◽  
pp. 1-8
Author(s):  
Liu-Chao Qiu ◽  
Yu Han

A three-dimensional multiple-relaxation-time lattice Boltzmann method (MRT-LBM) with a D3Q27 discrete velocity model is applied for simulation of self-compacting concrete (SCC) flows. In the present study, the SCC is assumed as a non-Newtonian fluid, and a modified Herschel–Bulkley model is used as constitutive mode. The mass tracking algorithm was used for modeling the liquid-gas interface. Two numerical examples of the slump test and enhanced L-box test were performed, and the calculated results are compared with available experiments in literatures. The numerical results demonstrate the capability of the proposed MRT-LBM in modeling of self-compacting concrete flows.


2018 ◽  
Vol 4 (1) ◽  
pp. 91
Author(s):  
Soca Anggoro Wulan ◽  
Iman Satyarno ◽  
Ashar Saputra

Mix design of Self Compacting Concrete or SCC is not straight forward because many parameters control its rheological properties. The case becomes more complicated if high compressive strength is also to be achieved. Therefore simpler approach is used, that is by firstly determining the flow mortar mix which is easier to be designed even with the requirement of ultra-high compressive strength. The mix design of SCC is then determined by simply adding the coarse aggregate with a certain amount of that mortar mix. In this research the ultra-high compressive strength flow mortar was made of Type I cement, 15% of cement weight silica fume, weight ratio of cement and curve No IV sand was 1: 0.35. The water-cementious ratio was 0.22 and the amount of plasticizer was 1.3%, 1.4%, 1.5% and 1.6% of the cement weight. For the SCC, the used coefficient was taken to be 1.4, 1.6, and 1.8 of the volume of that aggregate void for mortars, the aggregate value was at the volume of the remaining count of mortar and its size was 4.8 mm - 9.6 mm. Test results show that the mortar flow ability was 170 mm, 180 mm, 220 mm and 250 mm, where the achieved compressive strength was 83.1 MPa, 96.8 MPa, 111.4 MPa, and 135.5 MPa respectively. Mortar mix with 1.6% super plasticizer was then used for making the SCC and the results show that the concrete flow were 460 mm, 580 mm and 660 mm and the compressive strength were 88.2 MPa, 100.0 MPa, and 97.9 MPa.  It can be concluded that using this simpler approach the SCC can have 580 mm flow and 100 MPa compressive strength


KURVATEK ◽  
2018 ◽  
Vol 2 (2) ◽  
pp. 1-10
Author(s):  
RETNOWATI Setioningsih

Dalam abu vulkanik dan semen unsur kimia yang paling utama adalah silica.  Dibeberapa negara abu vulkanik sering dijadikan bahan campuran untuk membuat semen dan material beton.  Beton banyak dipakai sebagai bahan bangunan, namun dalam proses pengecoran sering mengalami kendala dikarenakan jarak tulangan yang terlalu rapat.  Salah satu perkembangan teknologi beton adalah beton Self Compacting Concrete (beton SCC).Tulisan ini membahas pemanfaatan abu vulkanik untuk aplikasi beton SCC. Uji eksperimental dilakukan untuk mengetahui pengaruh abu vulkanik di beton SCC, yang digunakan dengan penambahan dan penggantian parsial mulai dari 0% sampai dengan 10% berdasarkan berat bahan semen. Pengujian kuat tekan dilakukan dengan menggunakan tiga spesimen silinder standar untuk setiap data. Hasil pengujian menunjukkan bahwa abu vulkanik dapat memperbaiki kuat tekan beton SCC dengan metode penambahan dan penggantian semen dengan dosis optimum 5% berat semen.Kata kunci : abu vulkanik, semen, material beton dan beton SCC


2017 ◽  
Vol 8 (2) ◽  
pp. 47
Author(s):  
F. Benmerioul ◽  
Abdelkadir Makani ◽  
Ahmed Tafraoui ◽  
Said Zaouai

Sign in / Sign up

Export Citation Format

Share Document