scholarly journals Chemical Characteristics and Source Apportionment of PM2.5 and Long-Range Transport from Northeast Asia Continent to Niigata in Eastern Japan

2018 ◽  
Vol 18 (4) ◽  
pp. 938-956 ◽  
Author(s):  
Ping Li ◽  
Keiichi Sato ◽  
Hideo Hasegawa ◽  
Minqun Huo ◽  
Hiroaki Minoura ◽  
...  
2019 ◽  
Vol 244 ◽  
pp. 414-422 ◽  
Author(s):  
Katsushige Uranishi ◽  
Fumikazu Ikemori ◽  
Hikari Shimadera ◽  
Akira Kondo ◽  
Seiji Sugata

2007 ◽  
Vol 7 (13) ◽  
pp. 3587-3596 ◽  
Author(s):  
J. Y. Lee ◽  
Y. P. Kim

Abstract. Northeast Asia including China, Korea, and Japan is one of the world's largest fossil fuel consumption regions. Seoul, Korea, is a megacity in Northeast Asia. Its emissions of air pollutants can affect the region, and in turn it is also affected by regional emissions. To understand the extent of these influences, major sources of ambient particulate PAHs in Seoul were identified and quantified based on measurements made between August 2002 and December 2003. The chemical mass balance (CMB) model was applied. Seven major emission sources were identified based on the emission data in Seoul and Northeast Asia: Gasoline and diesel vehicles, residential coal use, coke ovens, coal power plants, biomass burning, and natural gas (NG) combustion. The major sources of particulate PAHs in Seoul during the whole measurement period were gasoline and diesel vehicles, together accounted for 31% of the measured particulate PAHs levels. However, the source contributions showed distinct daily and seasonal variations. High contributions of biomass burning and coal (residential and coke oven) were observed in fall and winter, accounting for 63% and 82% of the total concentration of PAHs, respectively. Since these sources were not strong in and around Seoul, they are likely to be related to transport from outside of Seoul, from China and/or North Korea. This implies that the air quality in a mega-city such as Seoul can be influenced by the long range transport of air pollutants such as PAHs.


2005 ◽  
Vol 39 (22) ◽  
pp. 4075-4085 ◽  
Author(s):  
Il-Soo Park ◽  
Won-Jun Choi ◽  
Tae-Young Lee ◽  
Suk-Jo Lee ◽  
Jin-Seok Han ◽  
...  

2018 ◽  
Vol 18 (24) ◽  
pp. 18043-18062 ◽  
Author(s):  
Shan Huang ◽  
Zhijun Wu ◽  
Laurent Poulain ◽  
Manuela van Pinxteren ◽  
Maik Merkel ◽  
...  

Abstract. Marine aerosol particles are an important part of the natural aerosol systems and might have a significant impact on the global climate and biological cycle. It is widely accepted that truly pristine marine conditions are difficult to find over the ocean. However, the influence of continental and anthropogenic emissions on the marine boundary layer (MBL) aerosol is still less understood and non-quantitative, causing uncertainties in the estimation of the climate effect of marine aerosols. This study presents a detailed chemical characterization of the MBL aerosol as well as the source apportionment of the organic aerosol (OA) composition. The data set covers the Atlantic Ocean from 53∘ N to 53∘ S, based on four open-ocean cruises in 2011 and 2012. The aerosol particle composition was measured with a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), which indicated that sub-micrometer aerosol particles over the Atlantic Ocean are mainly composed of sulfates (50 % of the particle mass concentration), organics (21 %) and sea salt (12 %). OA has been apportioned into five factors, including three factors linked to marine sources and two with continental and/or anthropogenic origins. The marine oxygenated OA (MOOA, 16 % of the total OA mass) and marine nitrogen-containing OA (MNOA, 16 %) are identified as marine secondary products with gaseous biogenic precursors dimethyl sulfide (DMS) or amines. Marine hydrocarbon-like OA (MHOA, 19 %) was attributed to the primary emissions from the Atlantic Ocean. The factor for the anthropogenic oxygenated OA (Anth-OOA, 19 %) is related to continental long-range transport. Represented by the combustion oxygenated OA (Comb-OOA), aged combustion emissions from maritime traffic and wild fires in Africa contributed, on average, a large fraction to the total OA mass (30 %). This study provides the important finding that long-range transport was found to contribute averagely 49 % of the submicron OA mass over the Atlantic Ocean. This is almost equal to that from marine sources (51 %). Furthermore, a detailed latitudinal distribution of OA source contributions showed that DMS oxidation contributed markedly to the OA over the South Atlantic during spring, while continental-related long-range transport largely influenced the marine atmosphere near Europe and western and central Africa (15∘ N to 15∘ S). In addition, supported by a solid correlation between marine tracer methanesulfonic acid (MSA) and the DMS-oxidation OA (MOOA, R2>0.85), this study suggests that the DMS-related secondary organic aerosol (SOA) over the Atlantic Ocean could be estimated by MSA and a scaling factor of 1.79, especially in spring.


2007 ◽  
Vol 7 (1) ◽  
pp. 1479-1506 ◽  
Author(s):  
J. Y. Lee ◽  
Y. P. Kim

Abstract. Northeast Asia including China, Korea, and Japan is one of the world's largest fossil fuel consumption regions. Seoul is a megacity in Northeast Asia and its emissions of air pollutants can affect the region and is also affected by the regional emissions. To understand the degree of this relationship, major sources of ambient particulate PAHs at Seoul, Korea were identified and quantified based on the measurement data between August 2002 and December 2003. The chemical mass balance (CMB) model was applied. Seven major emission sources were identified based on the emission data in Seoul and Northeast Asia: Gasoline and diesel vehicles, coal residential, coke oven, coal power plant, biomass burning, natural gas (NG) combustion. The major source of particulate PAHs at Seoul on the whole measurement period was gasoline and diesel vehicles, accounted for 31% of the measured particulate PAHs levels. However, the source contributions showed distinct seasonal variations. High contributions of biomass burning and coal (residential and coke oven) were shown in fall and winter accounted for 63% and 82% of the total PAHs concentration, respectively. Since these sources were not strong in and around Seoul, these might be related to transport from outside of Seoul, from China and/or North Korea. It implies that the air quality in the large urban city such as Seoul can be influenced by the long range transport of air pollutants such as PAHs.


2016 ◽  
Vol 144 ◽  
pp. 315-324 ◽  
Author(s):  
Jikang Wang ◽  
Jun Xu ◽  
Youjiang He ◽  
Yunbo Chen ◽  
Fan Meng

Sign in / Sign up

Export Citation Format

Share Document