scholarly journals Automorphisms of cubic surfaces in positive characteristic

Author(s):  
Игорь Владимирович Долгачев ◽  
Igor Vladimirovich Dolgachev ◽  
Alexander Duncan ◽  
Alexander Duncan

We classify all possible automorphism groups of smooth cubic surfaces over an algebraically closed field of arbitrary characteristic. As an intermediate step we also classify automorphism groups of quartic del Pezzo surfaces. We show that the moduli space of smooth cubic surfaces is rational in every characteristic, determine the dimensions of the strata admitting each possible isomorphism class of automorphism group, and find explicit normal forms in each case. Finally, we completely characterize when a smooth cubic surface in positive characteristic, together with a group action, can be lifted to characteristic zero. Bibliography: 29 titles.

2021 ◽  
Vol Volume 5 ◽  
Author(s):  
Claudia Stadlmayr

We determine all configurations of rational double points that occur on RDP del Pezzo surfaces of arbitrary degree and Picard rank over an algebraically closed field $k$ of arbitrary characteristic ${\rm char}(k)=p \geq 0$, generalizing classical work of Du Val to positive characteristic. Moreover, we give simplified equations for all RDP del Pezzo surfaces of degree $1$ containing non-taut rational double points.


2018 ◽  
Vol 167 (01) ◽  
pp. 35-60 ◽  
Author(s):  
BARINDER BANWAIT ◽  
FRANCESC FITÉ ◽  
DANIEL LOUGHRAN

AbstractLet S be a smooth cubic surface over a finite field $\mathbb{F}$q. It is known that #S($\mathbb{F}$q) = 1 + aq + q2 for some a ∈ {−2, −1, 0, 1, 2, 3, 4, 5, 7}. Serre has asked which values of a can arise for a given q. Building on special cases treated by Swinnerton–Dyer, we give a complete answer to this question. We also answer the analogous question for other del Pezzo surfaces, and consider the inverse Galois problem for del Pezzo surfaces over finite fields. Finally we give a corrected version of Manin's and Swinnerton–Dyer's tables on cubic surfaces over finite fields.


2019 ◽  
Vol 373 (3) ◽  
pp. 1775-1843 ◽  
Author(s):  
Andrea Fanelli ◽  
Stefan Schröer

Author(s):  
Fabio Bernasconi ◽  
Hiromu Tanaka

We establish two results on three-dimensional del Pezzo fibrations in positive characteristic. First, we give an explicit bound for torsion index of relatively torsion line bundles. Second, we show the existence of purely inseparable sections with explicit bounded degree. To prove these results, we study log del Pezzo surfaces defined over imperfect fields.


2018 ◽  
Vol 97 (2) ◽  
pp. 129-130
Author(s):  
E. A. Yasinsky

2017 ◽  
Vol 153 (4) ◽  
pp. 820-850 ◽  
Author(s):  
Paolo Cascini ◽  
Hiromu Tanaka ◽  
Jakub Witaszek

We show that any Kawamata log terminal del Pezzo surface over an algebraically closed field of large characteristic is globally $F$-regular or it admits a log resolution which lifts to characteristic zero. As a consequence, we prove the Kawamata–Viehweg vanishing theorem for klt del Pezzo surfaces of large characteristic.


2020 ◽  
Vol 31 (11) ◽  
pp. 2050083
Author(s):  
Constantin Shramov

We classify finite groups acting by birational transformations of a nontrivial Severi–Brauer surface over a field of characteristic zero that are not conjugate to subgroups of the automorphism group. Also, we show that the automorphism group of a smooth cubic surface over a field [Formula: see text] of characteristic zero that has no [Formula: see text]-points is abelian, and find a sharp bound for the Jordan constants of birational automorphism groups of such cubic surfaces.


1996 ◽  
Vol 185 (2) ◽  
pp. 374-389 ◽  
Author(s):  
Toshio Hosoh

2014 ◽  
Vol 58 (1) ◽  
pp. 33-52 ◽  
Author(s):  
Grigory Belousov

AbstractIn the present paper we classify del Pezzo surfaces with log terminal singularities admitting an action of a finite simple group.


2016 ◽  
Vol 4 ◽  
Author(s):  
ZACHARY MADDOCK

The author finds a limit on the singularities that arise in geometric generic fibers of morphisms between smooth varieties of positive characteristic by studying changes in embedding dimension under inseparable field extensions. This result is then used in the context of the minimal model program to rule out the existence of smooth varieties fibered by certain nonnormal del Pezzo surfaces over bases of small dimension.


Sign in / Sign up

Export Citation Format

Share Document