scholarly journals Comparison of Cloud Type Classification with Split Window Algorithm Based on Different Infrared Band Combinations of Himawari-8 Satellite

2018 ◽  
Vol 07 (03) ◽  
pp. 218-234 ◽  
Author(s):  
Babag Purbantoro ◽  
Jamrud Aminuddin ◽  
Naohiro Manago ◽  
Koichi Toyoshima ◽  
Nofel Lagrosas ◽  
...  
2019 ◽  
Vol 11 (24) ◽  
pp. 2944 ◽  
Author(s):  
Babag Purbantoro ◽  
Jamrud Aminuddin ◽  
Naohiro Manago ◽  
Koichi Toyoshima ◽  
Nofel Lagrosas ◽  
...  

Cloud classification is not only important for weather forecasts, but also for radiation budget studies. Although cloud mask and classification procedures have been proposed for Himawari-8 Advanced Himawari Imager (AHI), their applicability is still limited to daytime imagery. The split window algorithm (SWA), which is a mature algorithm that has long been exploited in the cloud analysis of satellite images, is based on the scatter diagram between the brightness temperature (BT) and BT difference (BTD). The purpose of this research is to examine the usefulness of the SWA for the cloud classification of both daytime and nighttime images from AHI. We apply SWA also to the image data from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra to highlight the capability of AHI. We implement the cloud analysis around Japan by employing band 3 (0.469 μm) of MODIS and band 1 (0.47 μm) of AHI for extracting the cloud-covered regions in daytime. In the nighttime case, the bands that are centered at 3.9, 11, 12, and 13 µm are utilized for both MODIS and Himawari-8, with somewhat different combinations for land and sea areas. Thus, different thresholds are used for analyzing summer and winter images. Optimum values for BT and BTD thresholds are determined for the band pairs of band 31 (11.03 µm) and 32 (12.02 µm) of MODIS (SWA31-32) and band 13 (10.4 µm) and 15 (12.4 µm) of AHI (SWA13-15) in the implementation of SWA. The resulting cloud mask and classification are verified while using MODIS standard product (MYD35) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. It is found that MODIS and AHI results both capture the essential characteristics of clouds reasonably well in spite of the relatively simple scheme of SWA based on four threshold values, although a broader spread of BTD obtained with Himawari-8 AHI (SWA13-15) could possibly lead to more consistent results for cloud-type classification than SWA31-32 based on the MODIS sensors.


2022 ◽  
Vol 305 ◽  
pp. 117834
Author(s):  
Alfredo Nespoli ◽  
Alessandro Niccolai ◽  
Emanuele Ogliari ◽  
Giovanni Perego ◽  
Elena Collino ◽  
...  

2017 ◽  
Author(s):  
Donna Flynn ◽  
Yan Shi ◽  
K-S Lim ◽  
Laura Riihimaki

2020 ◽  
Vol 12 (2) ◽  
pp. 316
Author(s):  
Vesta Afzali Gorooh ◽  
Subodh Kalia ◽  
Phu Nguyen ◽  
Kuo-lin Hsu ◽  
Soroosh Sorooshian ◽  
...  

Satellite remote sensing plays a pivotal role in characterizing hydrometeorological components including cloud types and their associated precipitation. The Cloud Profiling Radar (CPR) on the Polar Orbiting CloudSat satellite has provided a unique dataset to characterize cloud types. However, data from this nadir-looking radar offers limited capability for estimating precipitation because of the narrow satellite swath coverage and low temporal frequency. We use these high-quality observations to build a Deep Neural Network Cloud-Type Classification (DeepCTC) model to estimate cloud types from multispectral data from the Advanced Baseline Imager (ABI) onboard the GOES-16 platform. The DeepCTC model is trained and tested using coincident data from both CloudSat and ABI over the CONUS region. Evaluations of DeepCTC indicate that the model performs well for a variety of cloud types including Altostratus, Altocumulus, Cumulus, Nimbostratus, Deep Convective and High clouds. However, capturing low-level clouds remains a challenge for the model. Results from simulated GOES-16 ABI imageries of the Hurricane Harvey event show a large-scale perspective of the rapid and consistent cloud-type monitoring is possible using the DeepCTC model. Additionally, assessments using half-hourly Multi-Radar/Multi-Sensor (MRMS) precipitation rate data (for Hurricane Harvey as a case study) show the ability of DeepCTC in identifying rainy clouds, including Deep Convective and Nimbostratus and their precipitation potential. We also use DeepCTC to evaluate the performance of the Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Cloud Classification System (PERSIANN-CCS) product over different cloud types with respect to MRMS referenced at a half-hourly time scale for July 2018. Our analysis suggests that DeepCTC provides supplementary insights into the variability of cloud types to diagnose the weakness and strength of near real-time GEO-based precipitation retrievals. With additional training and testing, we believe DeepCTC has the potential to augment the widely used PERSIANN-CCS algorithm for estimating precipitation.


Sign in / Sign up

Export Citation Format

Share Document