scholarly journals Comparison of Aqua/Terra MODIS and Himawari-8 Satellite Data on Cloud Mask and Cloud Type Classification Using Split Window Algorithm

2019 ◽  
Vol 11 (24) ◽  
pp. 2944 ◽  
Author(s):  
Babag Purbantoro ◽  
Jamrud Aminuddin ◽  
Naohiro Manago ◽  
Koichi Toyoshima ◽  
Nofel Lagrosas ◽  
...  

Cloud classification is not only important for weather forecasts, but also for radiation budget studies. Although cloud mask and classification procedures have been proposed for Himawari-8 Advanced Himawari Imager (AHI), their applicability is still limited to daytime imagery. The split window algorithm (SWA), which is a mature algorithm that has long been exploited in the cloud analysis of satellite images, is based on the scatter diagram between the brightness temperature (BT) and BT difference (BTD). The purpose of this research is to examine the usefulness of the SWA for the cloud classification of both daytime and nighttime images from AHI. We apply SWA also to the image data from Moderate Resolution Imaging Spectroradiometer (MODIS) onboard Aqua and Terra to highlight the capability of AHI. We implement the cloud analysis around Japan by employing band 3 (0.469 μm) of MODIS and band 1 (0.47 μm) of AHI for extracting the cloud-covered regions in daytime. In the nighttime case, the bands that are centered at 3.9, 11, 12, and 13 µm are utilized for both MODIS and Himawari-8, with somewhat different combinations for land and sea areas. Thus, different thresholds are used for analyzing summer and winter images. Optimum values for BT and BTD thresholds are determined for the band pairs of band 31 (11.03 µm) and 32 (12.02 µm) of MODIS (SWA31-32) and band 13 (10.4 µm) and 15 (12.4 µm) of AHI (SWA13-15) in the implementation of SWA. The resulting cloud mask and classification are verified while using MODIS standard product (MYD35) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. It is found that MODIS and AHI results both capture the essential characteristics of clouds reasonably well in spite of the relatively simple scheme of SWA based on four threshold values, although a broader spread of BTD obtained with Himawari-8 AHI (SWA13-15) could possibly lead to more consistent results for cloud-type classification than SWA31-32 based on the MODIS sensors.

2008 ◽  
Vol 25 (4) ◽  
pp. 501-518 ◽  
Author(s):  
Keith D. Hutchison ◽  
Barbara D. Iisager ◽  
Thomas J. Kopp ◽  
John M. Jackson

Abstract A new approach is presented to distinguish between clouds and heavy aerosols with automated cloud classification algorithms developed for the National Polar-orbiting Operational Environmental Satellite System (NPOESS) program. These new procedures exploit differences in both spectral and textural signatures between clouds and aerosols to isolate pixels originally classified as cloudy by the Visible/Infrared Imager/Radiometer Suite (VIIRS) cloud mask algorithm that in reality contains heavy aerosols. The procedures have been tested and found to accurately distinguish clouds from dust, smoke, volcanic ash, and industrial pollution over both land and ocean backgrounds in global datasets collected by NASA’s Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. This new methodology relies strongly upon data collected in the 0.412-μm bandpass, where smoke has a maximum reflectance in the VIIRS bands while dust simultaneously has a minimum reflectance. The procedures benefit from the VIIRS design, which is dual gain in this band, to avoid saturation in cloudy conditions. These new procedures also exploit other information available from the VIIRS cloud mask algorithm in addition to cloud confidence, including the phase of each cloudy pixel, which is critical to identify water clouds and restrict the use of spectral tests that would misclassify ice clouds as heavy aerosols. Comparisons between results from these new procedures, automated cloud analyses from VIIRS heritage algorithms, manually generated analyses, and MODIS imagery show the effectiveness of the new procedures and suggest that it is feasible to identify and distinguish between clouds and heavy aerosols in a single cloud mask algorithm.


2020 ◽  
Author(s):  
Andrzej Z. Kotarba

Abstract. The Moderate Resolution Imaging Spectroradiometer (MODIS) cloud detection procedure classifies instantaneous fields of view (IFOV) as either confident cloudy, probably cloudy, probably clear, or confident clear. The cloud amount calculation requires quantitative cloud fractions to be assigned to these classes. The operational procedure used by NASA assumes that confident clear and probably clear IFOV are cloud-free (cloud fraction 0 %), while the remaining categories are completely filled with clouds (cloud fraction 100 %). This study demonstrates that this best guess approach is unreliable, especially on a regional/ local scale. We use data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument flown on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) mission, collocated with MODIS/ Aqua IFOV. Based on 33,793,648 paired observations acquired in January and July 2015, we conclude that actual cloud fractions to be associated with MODIS cloud mask categories are 21.5 %, 27.7 %, 66.6 %, and 94.7 %. Spatial variability is significant, even within a single MODIS algorithm path, and the operational approach introduces uncertainties of up to 30 % of cloud amount, notably in the polar regions at night, and in selected locations over the northern hemisphere. Applications of MODIS data at ~10 degrees resolution (or finer) should first assess the extent of the error. Uncertainties were related to the efficiency of the cloud masking algorithm. Until the algorithm can be significantly modified, our method is a robust way to calibrate (correct) MODIS estimates. It can be also used for MODIS/ Terra data, and other missions where the footprint is collocated with CALIPSO.


2018 ◽  
Vol 07 (03) ◽  
pp. 218-234 ◽  
Author(s):  
Babag Purbantoro ◽  
Jamrud Aminuddin ◽  
Naohiro Manago ◽  
Koichi Toyoshima ◽  
Nofel Lagrosas ◽  
...  

2021 ◽  
Vol 13 (14) ◽  
pp. 2715
Author(s):  
Xuan Yang ◽  
Jinming Ge ◽  
Xiaoyu Hu ◽  
Meihua Wang ◽  
Zihang Han

Cloud-top heights (CTH), as one of the representative variables reflecting cloud macro-physical properties, affect the Earth–atmosphere system through radiation budget, water cycle, and atmospheric circulation. This study compares the CTH from passive- and active-spaceborne sensors with ground-based Ka-band zenith radar (KAZR) observations at the Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL) site for the period 2013–2019. A series of fundamental statistics on cloud probability in different limited time and areas at the SACOL site reveals that there is an optimal agreement for both cloud frequency and fraction derived from space and surface observations in a 0.5° × 0.5° box area and a 40-min time window. Based on the result, several facets of cloud fraction (CF), cloud overlapping, seasonal variation, and cloud geometrical depth (CGD) are investigated to evaluate the CTH retrieval accuracy of different observing sensors. Analysis shows that the CTH differences between multi-satellite sensors and KAZR decrease with increasing CF and CGD, significantly for passive satellite sensors in non-overlapping clouds. Regarding passive satellite sensors, e.g., Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua, the Multi-angle Imaging SpectroRadiometer (MISR) on Terra, and the Advanced Himawari Imager on Himawari-8 (HW8), a greater CTH frequency difference exists between the upper and lower altitude range, and they retrieve lower CTH than KAZR on average. The CTH accuracy of HW8 and MISR are susceptible to inhomogeneous clouds, which can be reduced by controlling the increase of CF. Besides, the CTH from active satellite sensors, e.g., Cloud Profiling Radar (CPR) on CloudSat, and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), agree well with KAZR and are less affected by seasonal variation and inhomogeneous clouds. Only CALIPSO CTH is higher than KAZR CTH, mainly caused by the low-thin clouds, typically in overlapping clouds.


2015 ◽  
Vol 29 (1) ◽  
pp. 77-90 ◽  
Author(s):  
Mallory L. Barnes ◽  
Tomoaki Miura ◽  
Thomas W. Giambelluca

Abstract A comprehensive understanding of the spatial, seasonal, and diurnal patterns in cloud cover frequency over the Hawaiian Islands was developed using high-resolution image data from the National Aeronautics and Space Administration’s Moderate Resolution Imaging Spectroradiometer (MODIS) sensors aboard the Terra and Aqua satellites. The Terra and Aqua MODIS cloud mask products, which provide the confidence that a given 1-km pixel is unobstructed by cloud, were obtained for the entire MODIS time series (10-plus years) over the main Hawaiian Islands. Monthly statistics were generated from the daily cloud mask data, including mean cloud cover frequency at the four daily overpass times. The derived mean cloud cover frequency showed patterns that were generally consistent with the known distribution of mean rainfall and with the results from previous studies. Cloud cover frequency was the highest over land areas with elevations between the lifting condensation level (~600 m) and the mean height of the trade wind inversion (TWI) base (~2200 m), especially for the windward (northeastern) mountain slopes. Above the TWI, cloud frequency decreased sharply with elevation. Irrespective of season, cloud cover frequency was generally higher in the afternoon than in the morning and higher in daytime than at nighttime although these trends varied spatially. The dry season months (May–October) were less cloudy than the wet season months (November–April) at nighttime. The analysis also revealed a local December–January minimum in the annual cycle of cloud cover frequency. The monthly time series produced in this study is the first high-spatial-resolution cloud cover dataset in Hawaii.


2021 ◽  
Vol 13 (10) ◽  
pp. 1992
Author(s):  
Alessio Lattanzio ◽  
Michael Grant ◽  
Marie Doutriaux-Boucher ◽  
Rob Roebeling ◽  
Jörg Schulz

Surface albedo, defined as the ratio of the surface-reflected irradiance to the incident irradiance, is one of the parameters driving the Earth energy budget and it is for this reason an essential variable in climate studies. Instruments on geostationary satellites provide suitable observations allowing long-term monitoring of surface albedo from space. In 2012, EUMETSAT published Release 1 of the Meteosat Surface Albedo (MSA) data record. The main limitation effecting the quality of this release was non-removed clouds by the incorporated cloud screening procedure that caused too high albedo values, in particular for regions with permanent cloud coverage. For the generation of Release 2, the MSA algorithm has been replaced with the Geostationary Surface Albedo (GSA) one, able to process imagery from any geostationary imager. The GSA algorithm exploits a new, improved, cloud mask allowing better cloud screening, and thus fixing the major limitation of Release 1. Furthermore, the data record has an extended temporal and spatial coverage compared to the previous release. Both Black-Sky Albedo (BSA) and White-Sky Albedo (WSA) are estimated, together with their associated uncertainties. A direct comparison between Release 1 and Release 2 clearly shows that the quality of the retrieval improved significantly with the new cloud mask. For Release 2 the decadal trend is less than 1% over stable desert sites. The validation against Moderate Resolution Imaging Spectroradiometer (MODIS) and the Southern African Regional Science Initiative (SAFARI) surface albedo shows a good agreement for bright desert sites and a slightly worse agreement for urban and rain forest locations. In conclusion, compared with MSA Release 1, GSA Release 2 provides the users with a significantly more longer time range, reliable and robust surface albedo data record.


2016 ◽  
Vol 29 (17) ◽  
pp. 6065-6083 ◽  
Author(s):  
Yinghui Liu ◽  
Jeffrey R. Key

Abstract Cloud cover is one of the largest uncertainties in model predictions of the future Arctic climate. Previous studies have shown that cloud amounts in global climate models and atmospheric reanalyses vary widely and may have large biases. However, many climate studies are based on anomalies rather than absolute values, for which biases are less important. This study examines the performance of five atmospheric reanalysis products—ERA-Interim, MERRA, MERRA-2, NCEP R1, and NCEP R2—in depicting monthly mean Arctic cloud amount anomalies against Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations from 2000 to 2014 and against Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations from 2006 to 2014. All five reanalysis products exhibit biases in the mean cloud amount, especially in winter. The Gerrity skill score (GSS) and correlation analysis are used to quantify their performance in terms of interannual variations. Results show that ERA-Interim, MERRA, MERRA-2, and NCEP R2 perform similarly, with annual mean GSSs of 0.36/0.22, 0.31/0.24, 0.32/0.23, and 0.32/0.23 and annual mean correlation coefficients of 0.50/0.51, 0.43/0.54, 0.44/0.53, and 0.50/0.52 against MODIS/CALIPSO, indicating that the reanalysis datasets do exhibit some capability for depicting the monthly mean cloud amount anomalies. There are no significant differences in the overall performance of reanalysis products. They all perform best in July, August, and September and worst in November, December, and January. All reanalysis datasets have better performance over land than over ocean. This study identifies the magnitudes of errors in Arctic mean cloud amounts and anomalies and provides a useful tool for evaluating future improvements in the cloud schemes of reanalysis products.


Sign in / Sign up

Export Citation Format

Share Document