scholarly journals Numerical Simulation of Water Droplets Deposition on the Last-Stage Stationary Blade of Steam Turbine

2010 ◽  
Vol 02 (04) ◽  
pp. 248-253 ◽  
Author(s):  
Danmei Xie ◽  
Xinggang Yu ◽  
Wangfan Li ◽  
Youmin Hou ◽  
Yang Shi ◽  
...  
Author(s):  
Fang Li ◽  
Shunsen Wang ◽  
Juan Di ◽  
Zhenping Feng

Abstract In order to study the effect of initial surface roughness on water droplet erosion resistance of last stage blade substrate of steam turbine, eight 17-4PH samples were grounded and velvet polished by different mesh metallographic sandpaper to establish sample with different initial surface roughness. The water droplet erosion experiments were carried out in the highspeed jet water erosion experiment system, and the mass and micro-morphology of each sample were measured by using precision electronic balance and ultra-depth of field microscope respectively at each experimental stage, and the measurement of water erosion trace width and maximum water erosion depth were also completed at the same time. On the basis of experiments, LS-DYNA was used for numerical simulation to verify the reliability of experimental results again. Results show that the smoother the initial surface of sample, then the smaller the mass loss, the stronger its water erosion resistance. On the contrary, the rougher the initial surface of sample, the more severe the surface irregularity, the more times the water droplets concentrated at the lowest point of pit when water droplets flow laterally after impact is completed, thus accelerating the formation of initial crack and lateral expansion, the poorer the water erosion resistance of sample. At same water erosion time, the smoother the sample surface, the later the complete erosion trace appear, the narrower the water erosion trace width. However, the maximum water erosion depth of sample is not affected by the initial surface roughness. The numerical simulation results are in good agreement with the experimental results.


2011 ◽  
Vol 5 (3) ◽  
Author(s):  
Youmin Hou ◽  
Danmei Xie ◽  
Wangfan Li ◽  
Xinggang Yu ◽  
Yang Shi ◽  
...  

2021 ◽  
Vol 9 ◽  
Author(s):  
Shuangshuang Fan ◽  
Ying Wang ◽  
Kun Yao ◽  
Yi Fan ◽  
Jie Wan ◽  
...  

In the operating process of the coal-fired generation during flexible peaking regulation, the primary and secondary water droplets in the steam flowing through the last two stages of the low-pressure cylinder could influence the efficiency and safety of the steam turbine definitely. However, systematic analysis of the movement characteristics of water droplets under low-load conditions is scarcely in the existing research, especially the ultra-low load conditions below 30%. Toward this end, the more novel algebraic slip model and particle transport model mentioned in this paper are used to simulate the primary and secondary water droplets. Taking a 600 MW unit as a research object, the droplets motion characteristics of the last two stages were simulated within four load conditions, including 100, 50, 40, and 30% THA. The results show that the diameter of the primary water droplets is smaller, ranging from 0 to 1 µm, during the flexible peak regulation process of the steam turbine. The deposition is mainly located at the entire moving blades and the trailing edge of the last two stator blades. With the load decreasing, the deposition effect decreases sustainably. And the larger diameters of secondary water droplets range from 10 to 300 µm. The erosion of secondary water droplets in the last stage is more serious than that of the second last stage for different load conditions, and the erosion of the second last stage could be negligible. The pressure face and suction face at 30% blade height of the last stage blade have been eroded most seriously. The lower the load, the worse erosion from the secondary water droplets, which poses a potential threat to the fracture of the last stage blades of the steam turbine. This study provides a certain reference value for the optimal design of steam turbine blades under flexible peak regulation.


2012 ◽  
Vol 614-615 ◽  
pp. 99-102
Author(s):  
Sheng Long Wang ◽  
Hong Hui Wu ◽  
Tong Hui Song

Wetness is one of the important parameters of the relationship with the turbine operating efficiency and safety. Wetness is determined by the number of small water droplets in the steam, and the nucleation rate on the formation of small droplets has a direct relationship.The nucleation rate is difficult to through experiments measured. This article through numerical simulation obtained the distribution of the nucleation rate and supercooling degree.


Author(s):  
Xinjun Wang ◽  
Pengfei Su ◽  
Luke Chou ◽  
Panlong Guan ◽  
Chunguo Li ◽  
...  

Water droplets dispersion through a stationary cascade channel and their deposition on the blade surface in the last-stage of a 600MW steam turbine have been simulated with CFD software FLUENT. So the deposition on stationary blades along the axial and radial direction was determined. In the experiment, the performance of water removal by suction slots on stationary blades surface was investigated. The results showed that: 12.2% of water at the inlet still existed as droplets, depositing on the concave side of the airfoils in contrast with only 1.6% on the convex side. The volume of the water removed by the suction slots on the concave side was bigger than that on the convex side. The closer the slot position was to the trailing edge, the bigger the volume was. The volume became smaller and then larger with the increase in slot width; the minimum value occurred when slots were about 3.0 mm in width. The bigger suction pressure difference would initiate a bigger volume of water removed by suction slots, but the increase in main flow rate would quickly initiate a smaller volume.


2021 ◽  
Vol 1096 (1) ◽  
pp. 012097
Author(s):  
A M Kongkong ◽  
H Setiawan ◽  
J Miftahul ◽  
A R Laksana ◽  
I Djunaedi ◽  
...  

1976 ◽  
Vol 98 (3) ◽  
pp. 573-577 ◽  
Author(s):  
J. Krzyz˙anowski ◽  
B. Weigle

In a series of experiments aimed at the visualization of the wet steam flow in the exhaust part of a 200 MW condensing steam turbine a set of periscopes and light sources was used. The aim of the experiment was: 1 – The investigation of the liquid-phase flow over the last stage stator blading of the turbine mentioned. 2 – The investigation of the gaseous-phase flow through the last stage blading at full and part load. The first part of the program partially failed due to the opaqueness of the wet steam atmosphere for the turbine load higher than 10–20 MW. The detailed experimental conditions will be described. An assessment of the primary droplet size will also be given. The preliminary results of the second part of the program will be outlined. The advantages and disadvantages of the equipment used will be discussed.


Sign in / Sign up

Export Citation Format

Share Document