Numerical simulation of wet steam two-phase flow in the last-stage stationary blade of super-critical steam turbine

Author(s):  
Dan-mei Xie ◽  
Yang Shi ◽  
Wang-fan Li ◽  
You-min Hou ◽  
Xing-gang Yu ◽  
...  
Author(s):  
Pascal Post ◽  
Marwick Sembritzky ◽  
Francesca di Mare

Abstract In this paper we present a turbomachinery density-based CFD solver optimized for CPUs as well as GPUs, which accounts for complex thermodynamics including non-equilibrium condensation and two-phase flow, making extensive use of tabulation techniques. The two-phase flow is treated by means of the mono-dispersed Source-Term Euler-Euler model. The non-equilibrium wet-steam model is validated in classical nozzle test cases and its application in turbomachinery configuration is demonstrated in a well-documented steam turbine cascade in the context of classic RANS modeling. Finally, the LES-solver performance and scalability, together with its accuracy, are assessed and discussed on the basis of the well-known and theoretically relevant experiment by Comte-Bellot and Corrsin. For both, standard RANS computations, where an upwind schemes has been adopted, as well as for the LES computations, where a central scheme in skew-symmetric form has been employed, the solver shows remarkable computational speed and accuracy for non-ideal gas applications, rendering it suitable for more complex LES computations in steam turbine flows.


1976 ◽  
Vol 98 (3) ◽  
pp. 573-577 ◽  
Author(s):  
J. Krzyz˙anowski ◽  
B. Weigle

In a series of experiments aimed at the visualization of the wet steam flow in the exhaust part of a 200 MW condensing steam turbine a set of periscopes and light sources was used. The aim of the experiment was: 1 – The investigation of the liquid-phase flow over the last stage stator blading of the turbine mentioned. 2 – The investigation of the gaseous-phase flow through the last stage blading at full and part load. The first part of the program partially failed due to the opaqueness of the wet steam atmosphere for the turbine load higher than 10–20 MW. The detailed experimental conditions will be described. An assessment of the primary droplet size will also be given. The preliminary results of the second part of the program will be outlined. The advantages and disadvantages of the equipment used will be discussed.


Author(s):  
F Bakhtar ◽  
H Mashmoushy ◽  
O C Jadayel

During the course of expansion of steam in turbines the fluid first supercools and then nucleates to become a two-phase mixture. The liquid phase consists of a large number of extremely small droplets which are difficult to generate except by nucleation. To reproduce turbine two-phase flow conditions requires a supply of supercooled vapour which can be achieved under blow-down conditions by the equipment employed. This paper is the third of a set describing an investigation into the performance of a cascade of rotor tip section profiles in wet steam and presents the results of the wake traverses.


Sign in / Sign up

Export Citation Format

Share Document