scholarly journals Crystal Packing Studies, Thermal Properties and Hirshfeld Surface Analysis in the Zn(II) Complex of 3-Aminopyridine with Thiocyanate as Co-Ligand

2021 ◽  
Vol 11 (03) ◽  
pp. 63-84
Author(s):  
Divine Mbom Yufanyi ◽  
Hubert Jean Nono ◽  
Amah Colette Benedicta Yuoh ◽  
Che Dieudonne Tabong ◽  
Wirsiy Judith ◽  
...  
Author(s):  
Rubina Siddiqui ◽  
Urooj Iqbal ◽  
Zafar Saeed Saify ◽  
Shammim Akhter ◽  
Sammer Yousuf

The title compound, C31H46NO7 +·Cl−, was synthesized by a one-pot Mannich condensation reaction. In the molecule, the piperidinone ring adopts a chair conformation, and the trimethoxy-substituted benzene rings and octyl chain are arranged equatorially. In the crystal, centrosymmetric dimers are linked into layers parallel to (011) by N—H...Cl and C—H...Cl hydrogen bonds. A Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are O...H (20.5%) interactions followed by C...H (7.8%), Cl...H (5.5%), C...C (1.2%), C...O (0.5%) and Cl...O (0.4%) interactions.


Author(s):  
Ballo Daouda ◽  
Nanou Tiéba Tuo ◽  
Tuncer Hökelek ◽  
Kangah Niameke Jean-Baptiste ◽  
Kodjo Charles Guillaume ◽  
...  

The title compound, C18H16N2O2, consists of perimidine and methoxyphenol units, where the tricyclic perimidine unit contains a naphthalene ring system and a non-planar C4N2 ring adopting an envelope conformation with the NCN group hinged by 47.44 (7)° with respect to the best plane of the other five atoms. In the crystal, O—HPhnl...NPrmdn and N—HPrmdn...OPhnl (Phnl = phenol and Prmdn = perimidine) hydrogen bonds link the molecules into infinite chains along the b-axis direction. Weak C—H...π interactions may further stabilize the crystal structure. The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (49.0%), H...C/C...H (35.8%) and H...O/O...H (12.0%) interactions. Hydrogen bonding and van der Waals interactions are the dominant interactions in the crystal packing. Computational chemistry indicates that in the crystal, the O—HPhnl...NPrmdn and N—HPrmdn...OPhnl hydrogen-bond energies are 58.4 and 38.0 kJ mol−1, respectively. Density functional theory (DFT) optimized structures at the B3LYP/ 6–311 G(d,p) level are compared with the experimentally determined molecular structure in the solid state. The HOMO–LUMO behaviour was elucidated to determine the energy gap.


Author(s):  
Mohamed El Hafi ◽  
Sanae Lahmidi ◽  
Lhoussaine El Ghayati ◽  
Tuncer Hökelek ◽  
Joel T. Mague ◽  
...  

The title compound {systematic name: (S,E)-3-[4-(furan-2-yl)-2,3,4,5-tetrahydro-1H-benzo[b][1,4]diazepin-2-ylidene]-6-methyl-2H-pyran-2,4(3H)-dione}, C19H16N2O4, is constructed from a benzodiazepine ring system linked to furan and pendant dihydropyran rings, where the benzene and furan rings are oriented at a dihedral angle of 48.7 (2)°. The pyran ring is modestly non-planar [largest deviation of 0.029 (4) Å from the least-squares plane] while the tetrahydrodiazepine ring adopts a boat conformation. The rotational orientation of the pendant dihydropyran ring is partially determined by an intramolecular N—HDiazp...ODhydp (Diazp = diazepine and Dhydp = dihydropyran) hydrogen bond. In the crystal, layers of molecules parallel to the bc plane are formed by N—HDiazp...ODhydp hydrogen bonds and slipped π–π stacking interactions. The layers are connected by additional slipped π–π stacking interactions. A Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H...H (46.8%), H...O/O...H (23.5%) and H...C/C...H (15.8%) interactions, indicating that van der Waals interactions are the dominant forces in the crystal packing. Computational chemistry indicates that in the crystal the N—H...O hydrogen-bond energy is 57.5 kJ mol−1.


2019 ◽  
Vol 75 (9) ◽  
pp. 1301-1305
Author(s):  
Phichitra Phiokliang ◽  
Phakamat Promwit ◽  
Kittipong Chainok ◽  
Nanthawat Wannarit

A new mononuclear NiII complex with bis(pyridin-2-yl)amine (dpyam) and benzoate (benz), [Ni(C7H5O2)2(C10H9N3)], crystallizes in the monoclinic space group P21/c. The NiII ion adopts a cis-distorted octahedral geometry with an [NiN2O4] chromophore. In the crystal, the complex molecules are linked together into a one-dimensional chain by symmetry-related π–π stacking interactions [centroid-to-centroid distance = 3.7257 (17) Å], along with N—H...O and C—H...O hydrogen bonds. The crystal packing is further stabilized by C—H...π interactions, which were investigated by Hirshfeld surface analysis.


Author(s):  
Cemile Baydere ◽  
Merve Taşçı ◽  
Necmi Dege ◽  
Mustafa Arslan ◽  
Yusuf Atalay ◽  
...  

A novel chalcone, C20H20O, derived from benzylidenetetralone, was synthesized via Claissen–Schmidt condensation between tetralone and 2,4,6-trimethylbenzaldehyde. In the crystal, molecules are linked by C—H...O hydrogen bonds, producing R 2 2(20) and R 2 4(12) ring motifs. In addition, weak C—H...π and π-stacking interactions are observed. The intermolecular interactions were investigated using Hirshfeld surface analysis and two-dimensional fingerprint plots, revealing that the most important contributions for the crystal packing are from H...H (66.0%), H...C/ C...H (22.3%), H...O/O...H (9.3%), and C...C (2.4%) interactions. Shape-index plots show π–π stacking interactions and the curvedness plots show flat surface patches characteristic of planar stacking.


2019 ◽  
Vol 75 (12) ◽  
pp. 1934-1939 ◽  
Author(s):  
Yvon Bibila Mayaya Bisseyou ◽  
Mahama Ouattara ◽  
Pénétjiligué Adama Soro ◽  
R. C. A. Yao-Kakou ◽  
Abodou Jules Tenon

In the title hydrated hybrid compound C14H14N2OS2·H2O, the planar imidazo[1,2-a]pyridine ring system is linked to the 1,3-dithiolane moiety by an enone bridge. The atoms of the C—C bond in the 1,3-dithiolane ring are disordered over two positions with occupancies of 0.579 (14) and 0.421 (14) and both disordered rings adopt a half-chair conformation. The oxygen atom of the enone bridge is involved in a weak intramolecular C—H...O hydrogen bond, which generates an S(6) graph-set motif. In the crystal, the hybrid molecules are associated in R 2 2(14) dimeric units by weak C—H...O interactions. O—H...O hydrogen bonds link the water molecules, forming infinite self-assembled chains along the b-axis direction to which the dimers are connected via O—H...N hydrogen bonding. Analysis of intermolecular contacts using Hirshfeld surface analysis and contact enrichment ratio descriptors indicate that hydrogen bonds induced by water molecules are the main driving force in the crystal packing formation.


Author(s):  
Rajesh Kumar ◽  
Shafqat Hussain ◽  
Khalid M. Khan ◽  
Shahnaz Perveen ◽  
Sammer Yousuf

In the title compound, C16H10Cl2N2O2S, the dihedral angles formed by the chloro-substituted benzene rings with the central oxadiazole ring are 6.54 (9) and 6.94 (8)°. In the crystal, C—H...N hydrogen bonding links the molecules into undulating ribbons running parallel to thebaxis. Hirshfeld surface analysis indicates that the most important contributions for the crystal packing are the H...C (18%), H...H (17%), H...Cl (16.6%), H...O (10.4%), H...N (8.9%) and H...S (5.9%) interactions.


Sign in / Sign up

Export Citation Format

Share Document