scholarly journals Polymyxin B Alleviates Angiotensin II-Induced Stress Fiber Formation and Cellular Hypertrophy

2014 ◽  
Vol 05 (09) ◽  
pp. 903-910
Author(s):  
Kwang-Seok Oh ◽  
Jeong Hyun Lee ◽  
Byung Koo Oh ◽  
Jihye Mun ◽  
Byung Kil Park ◽  
...  
1996 ◽  
Vol 271 (37) ◽  
pp. 22281-22284 ◽  
Author(s):  
Zinaida S. Vexler ◽  
Marc Symons ◽  
Diane L. Barber

2001 ◽  
Vol 12 (11) ◽  
pp. 3618-3630 ◽  
Author(s):  
Atef N. Hanna ◽  
Luc G. Berthiaume ◽  
Yutaka Kikuchi ◽  
David Begg ◽  
Sylvain Bourgoin ◽  
...  

Tumor necrosis factor-α (TNF-α) is a proinflammatory cytokine that activates several signaling cascades. We determined the extent to which ceramide is a second messenger for TNF-α-induced signaling leading to cytoskeletal rearrangement in Rat2 fibroblasts. TNF-α, sphingomyelinase, or C2-ceramide induced tyrosine phosphorylation of focal adhesion kinase (FAK) and paxillin, and stress fiber formation. Ly 294002, a phosphatidylinositol 3-kinase (PI 3-K) inhibitor, or expression of dominant/negative Ras (N17) completely blocked C2-ceramide- and sphingomyelinase-induced tyrosine phosphorylation of FAK and paxillin and severely decreased stress fiber formation. The TNF-α effects were only partially inhibited. Dimethylsphingosine, a sphingosine kinase (SK) inhibitor, blocked stress fiber formation by TNF-α and C2-ceramide. TNF-α, sphingomyelinase, and C2-ceramide translocated Cdc42, Rac, and RhoA to membranes, and stimulated p21-activated protein kinase downstream of Ras-GTP, PI 3-K, and SK. Transfection with inactive RhoA inhibited the TNF-α- and C2-ceramide-induced stress fiber formation. Our results demonstrate that stimulation by TNF-α, which increases sphingomyelinase activity and ceramide formation, activates sphingosine kinase, Rho family GTPases, focal adhesion kinase, and paxillin. This novel pathway of ceramide signaling can account for ∼70% of TNF-α-induced stress fiber formation and cytoskeletal reorganization.


1996 ◽  
Vol 271 (48) ◽  
pp. 31008
Author(s):  
Zinaida S. Vexler ◽  
Marc Symons ◽  
Diane L. Barber

2007 ◽  
Vol 54 (1,2) ◽  
pp. 19-27 ◽  
Author(s):  
Hossein Nazari ◽  
Akira Takahashi ◽  
Nagakatsu Harada ◽  
Kazuaki Mawatari ◽  
Masayuki Nakano ◽  
...  

2014 ◽  
Vol 152 (2) ◽  
pp. 364-371 ◽  
Author(s):  
Jung Nyeo Chun ◽  
Sang-Yeob Kim ◽  
Eun-Jung Park ◽  
Eun Jung Kwon ◽  
Dong-Jun Bae ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
pp. e1009065
Author(s):  
Chunyan Wang ◽  
Haoran Zhang ◽  
Jiaqi Fu ◽  
Meng Wang ◽  
Yuhao Cai ◽  
...  

Bartonella T4SS effector BepC was reported to mediate internalization of big Bartonella aggregates into host cells by modulating F-actin polymerization. After that, BepC was indicated to induce host cell fragmentation, an interesting cell phenotype that is characterized by failure of rear-end retraction during cell migration, and subsequent dragging and fragmentation of cells. Here, we found that expression of BepC resulted in significant stress fiber formation and contractile cell morphology, which depended on combination of the N-terminus FIC (filamentation induced by c-AMP) domain and C-terminus BID (Bartonella intracellular delivery) domain of BepC. The FIC domain played a key role in BepC-induced stress fiber formation and cell fragmentation because deletion of FIC signature motif or mutation of two conserved amino acid residues abolished BepC-induced cell fragmentation. Immunoprecipitation confirmed the interaction of BepC with GEF-H1 (a microtubule-associated RhoA guanosine exchange factor), and siRNA-mediated depletion of GEF-H1 prevented BepC-induced stress fiber formation. Interaction with BepC caused the dissociation of GEF-H1 from microtubules and activation of RhoA to induce formation of stress fibers. The ROCK (Rho-associated protein kinase) inhibitor Y27632 completely blocked BepC effects on stress fiber formation and cell contractility. Moreover, stress fiber formation by BepC increased the stability of focal adhesions, which consequently impeded rear-edge detachment. Overall, our study revealed that BepC-induced stress fiber formation was achieved through the GEF-H1/RhoA/ROCK pathway.


2007 ◽  
Vol 293 (4) ◽  
pp. F1054-F1064 ◽  
Author(s):  
Xiaojing Yang ◽  
Hai-Chang Huang ◽  
Helen Yin ◽  
Robert J. Alpern ◽  
Patricia A. Preisig

Exposure to an acid load increases apical membrane Na+/H+ antiporter (NHE3) activity, a process that involves exocytic trafficking of the transporter to the apical membrane. We have previously shown that an intact microfilament structure is required for this exocytic process (Yang X, Amemiya M, Peng Y, Moe OW, Preisig PA, Alpern RJ. Am J Physiol Cell Physiol 279: C410–C419, 2000). The present studies demonstrate that acid-induced stress fiber formation is required for stimulation of NHE3 activity. Formation of stress fibers is associated with acid-induced tyrosine phosphorylation and increases in protein abundance of two focal adhesion proteins, p125FAK and paxillin. The Rho kinase inhibitor Y27632 completely blocks acid-induced stress fiber formation and the increases in apical membrane NHE3 abundance and activity, but it has no effect on acid-induced tyrosine phosphorylation of p125FAK or paxillin. Herbimycin A completely blocks acid-induced tyrosine phosphorylation of p125FAK and paxillin but only partially blocks stress fiber formation and NHE3 activation. These studies demonstrate that Rho kinase mediates acid-induced stress fiber formation, which is required for NHE3 exocytosis, and increases in NHE3 activity. Acid-induced tyrosine phosphorylation of the focal adhesion proteins p125FAK and paxillin is not Rho kinase dependent. Thus these two acid-mediated effects are associated, yet independent processes.


Sign in / Sign up

Export Citation Format

Share Document