scholarly journals Complete mitochondrial genomes reveal phylogeny relationship and evolutionary history of the family Felidae

2013 ◽  
Vol 12 (3) ◽  
pp. 3256-3262 ◽  
Author(s):  
W.Q. Zhang ◽  
M.H. Zhang
2010 ◽  
Vol 28 (1) ◽  
pp. 615-623 ◽  
Author(s):  
A. Bjork ◽  
W. Liu ◽  
J. O. Wertheim ◽  
B. H. Hahn ◽  
M. Worobey

2016 ◽  
Vol 113 (35) ◽  
pp. 9834-9839 ◽  
Author(s):  
Gregory Karadjian ◽  
Alexandre Hassanin ◽  
Benjamin Saintpierre ◽  
Guy-Crispin Gembu Tungaluna ◽  
Frederic Ariey ◽  
...  

Haemosporidia parasites have mostly and abundantly been described using mitochondrial genes, and in particular cytochrome b (cytb). Failure to amplify the mitochondrial cytb gene of Nycteria parasites isolated from Nycteridae bats has been recently reported. Bats are hosts to a diverse and profuse array of Haemosporidia parasites that remain largely unstudied. There is a need to obtain more molecular data from chiropteran parasites. Such data would help to better understand the evolutionary history of Haemosporidia, which notably include the Plasmodium parasites, malaria’s agents. We use next-generation sequencing to obtain the complete mitochondrial genome of Nycteria parasites from African Nycteris grandis (Nycteridae) and Rhinolophus alcyone (Rhinolophidae) and Asian Megaderma spasma (Megadermatidae). We report four complete mitochondrial genomes, including two rearranged mitochondrial genomes within Haemosporidia. Our results open outlooks into potentially undiscovered Haemosporidian diversity.


1990 ◽  
Vol 3 (1) ◽  
pp. 145
Author(s):  
DJ Colgan

This paper is a review of the use of information regarding the presence of duplicate genes and their regulation in systematics. The review concentrates on data derived from protein electrophoresis and restriction fragment length polymorphism analysis. The appearance of a duplication in a subset of a group of species implies that the members of the subset belong to the same clade. Suppression of the duplication may render this clade apparently paraphyletic, but may itself be informative of relations within the lineage through patterns of loss of expression in all, or some tissues, or through restrictions of the formation of functional heteropolymers in polymeric enzymes. Examples are given of studies which have used such information to establish phylogenetic hypotheses at the family level, to identify an auto- or allo-polyploid origin of polyploid species and to determine whether there have been single or multiple origins of such species. The likelihood of homoplasy in the patterns of appearance and regulation of duplicates depends on the molecular basis of the duplication. In particular, the contrast between the expected consequences of tandem duplication and the expression of pseudogenes emphasises the value of determining the mechanism of the original duplication. Many instances of sporadic gene duplication are now known, and polyploidisation is a common event in the evolutionary history of both plants and animals. So the opportunities to discover duplicationrelated characters will arise in many systematic studies. A program is presented to increase the chances that such useful information will be recognisable during the studies.


1993 ◽  
Vol 67 (4) ◽  
pp. 549-570 ◽  
Author(s):  
Bruce S. Lieberman

Phylogenetic parsimony analysis was used to classify the Siegenian–Eifelian “Metacryphaeus group” of the family Calmoniidae. Thirty-eight exoskeletal characters for 16 taxa produced a shortest-length cladogram with a consistency index of 0.49. A classification based on retrieving the structure of this cladogram recognizes nine genera: Typhloniscus Salter, Plesioconvexa n. gen., Punillaspis Baldis and Longobucco, Eldredgeia n. gen., Clarkeaspis n. gen., Malvinocooperella n. gen., Wolfartaspis Cooper, Plesiomalvinella Lieberman, Edgecombe, and Eldredge (used to represent the malvinellid clade), and Metacryphaeus Reed. The malvinellid clade is most closely related to a revised monophyletic Metacryphaeus. Typhloniscus is the basal member of the “Metacryphaeus group,” and the monotypic Wolfartaspis is sister to the clade containing the malvinellids and Metacryphaeus. Six new species are diagnosed: Punillaspis n. sp. A, “Clarkeaspis” gouldi, Clarkeaspis padillaensis, Malvinocooperella pregiganteus, Metacryphaeus curvigena, and Metacryphaeus branisai. Primitively, this group has South African and Andean affinities, and its evolutionary history suggests rapid diversification. In addition, evolutionary patterns in this group, and the distribution of character reversals, call into question certain notions about the nature of adaptive radiations. The distributions of taxa may answer questions about the number of marine transgressive/regressive cycles in the Emsian–Eifelian of the Malvinokaffric Realm.


2021 ◽  
Author(s):  
Keerthic Aswin ◽  
Srinivasan Ramachandran ◽  
Vivek T Natarajan

AbstractEvolutionary history of coronaviruses holds the key to understand mutational behavior and prepare for possible future outbreaks. By performing comparative genome analysis of nidovirales that contain the family of coronaviruses, we traced the origin of proofreading, surprisingly to the eukaryotic antiviral component ZNFX1. This common recent ancestor contributes two zinc finger (ZnF) motifs that are unique to viral exonuclease, segregating them from DNA proof-readers. Phylogenetic analyses indicate that following acquisition, genomes of coronaviruses retained and further fine-tuned proofreading exonuclease, whereas related families harbor substitution of key residues in ZnF1 motif concomitant to a reduction in their genome sizes. Structural modelling followed by simulation suggests the role of ZnF in RNA binding. Key ZnF residues strongly coevolve with replicase, and the helicase involved in duplex RNA unwinding. Hence, fidelity of replication in coronaviruses is a result of convergent evolution, that enables maintenance of genome stability akin to cellular proofreading systems.


1984 ◽  
Vol 8 ◽  
pp. 182-198
Author(s):  
Catherine Badgley

The evolutionary history of humans is well understood in outline, compared to that of many other groups of mammals. But human evolution remains enigmatic in its details, and these are compelling both scientifically and personally because they relate to the biological uniqueness of humans. Humans are placed in the primate family Hominidae, which, in traditional classifications, contains a single living species, Homo sapiens. The closest living relatives of humans are great apes: the chimpanzees Pan paniscus and Pan troglodytes, the gorilla Gorilla gorilla, and the orangutan Pongo pygmaeus. These apes have traditionally been placed in the family Pongidae as the sister group of Hominidae. Living Hominidae and Pongidae, together with Hylobatidae (gibbons) comprise the modern representatives of the primate suborder Hominoidea.


Sign in / Sign up

Export Citation Format

Share Document