scholarly journals Effectiveness of microsatellite and single nucleotide polymorphism markers for parentage analysis in European domestic pigs

2015 ◽  
Vol 14 (1) ◽  
pp. 1362-1370 ◽  
Author(s):  
G.C. Yu ◽  
Q.Z. Tang ◽  
K.R. Long ◽  
T.D. Che ◽  
M.Z. Li ◽  
...  
Genes ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 737
Author(s):  
Maja Žulj Mihaljević ◽  
Edi Maletić ◽  
Darko Preiner ◽  
Goran Zdunić ◽  
Marijan Bubola ◽  
...  

Croatian viticulture was most extensive at the beginning of the 20th century, when about 400 varieties were in use. Autochthonous varieties are the result of spontaneous hybridization from the pre-phylloxera era and are still cultivated today on about 35 % of vineyard area, while some exist only in repositories. We present what is the most comprehensive genetic analysis of all major Croatian national repositories, with a large number of microsatellite, or simple sequence repeat (SSR) markers, and it is also the first study to apply single nucleotide polymorphism (SNP) markers. After 212 accessions were fingerprinted, 95 were classified as unique to Croatian germplasm. Genetic diversity of Croatian germplasm is rather high considering its size. SNP markers proved useful for fingerprinting but less informative and practical than SSRs. Analysis of the genetic structure showed that Croatian germplasm is predominantly part of the Balkan grape gene pool. A high number of admixed varieties and synonyms is a consequence of complex pedigrees and migrations. Parentage analysis confirmed 24 full parentages, as well as 113 half-kinships. Unexpectedly, several key genitors could not be detected within the present Croatian germplasm. The low number of reconstructed parentages (19%) points to severe genetic erosion and stresses the importance of germplasm repositories.


2020 ◽  
Author(s):  
Lirong Hu ◽  
Dong Li ◽  
Qin Chu ◽  
Yachun Wang ◽  
Lei Zhou ◽  
...  

Abstract Background: In China, the widespread crossbreeding between Simmental and Holstein is a universal way so as to better improve the comprehensive benefits, as well as decline the inbreeding coefficient. However, the wrong parentage appeared frequently in this population than others due to not only the reasons in pure breeds, but more importantly, the lack of enough attention, which caused the lower accuracy of genetic parameter estimation and genetic evaluation in breeding systems. Single nucleotide polymorphism (SNP) panel in a certain population as a powerful tool for parentage assignment has been reported in numerous studies, especially in cattle. Therefore, the aim of this study was to build an SNP panel with sufficient power for parentage testing in the crossbred population of Simmental and Holstein in China. Results: In the present study, combining direct sequencing method in polymerase chain reaction (PCR) products of deoxyribonucleic acid (DNA) pooling and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) genotyping method in individuals, a panel comprising 50 highly informative single nucleotide polymorphisms (SNPs) for parentage analysis was developed in a crossbred Chinese cattle population. The average minor allele frequency (MAF) was 0.43 and the cumulative exclusion probability for single-parent and both-parent inference met 0.99797 and 0.999999, respectively. The maker-set was then used for parentage verification in a group of 81 trios with the likelihood-based parentage-assignment program of Cervus software. Compared with on-farm records, the results showed that this 50-SNP system could provide sufficient and reliable information for parentage testing with the parental mistakes for mother-offspring and sire-offspring being 8.6% and 18.5%, respectively.Conclusion: Knowledge of these results, we provided one set of low-cost and efficient SNPs for running paternity testing in the crossbred cattle population of Simmental and Holstein in China. Keywords: Parentage analysis, Single nucleotide polymorphism (SNP), Chinese crossbred cattle


2016 ◽  
Vol 94 (suppl_4) ◽  
pp. 106-107
Author(s):  
J. Qiu ◽  
B. Simpson ◽  
L. Kock ◽  
J. Donner ◽  
C. Cole ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document