scholarly journals Oxidative stress modulation in hepatitis C virus infected cells

2015 ◽  
Vol 7 (29) ◽  
pp. 2880 ◽  
Author(s):  
Sonia A Lozano-Sepulveda
2009 ◽  
Vol 106 (37) ◽  
pp. 15903-15908 ◽  
Author(s):  
Jamel Mankouri ◽  
Mark L. Dallas ◽  
Mair E. Hughes ◽  
Stephen D. C. Griffin ◽  
Andrew Macdonald ◽  
...  

An estimated 3% of the global population are infected with hepatitis C virus (HCV), and the majority of these individuals will develop chronic liver disease. As with other chronic viruses, establishment of persistent infection requires that HCV-infected cells must be refractory to a range of pro-apoptotic stimuli. In response to oxidative stress, amplification of an outward K+ current mediated by the Kv2.1 channel, precedes the onset of apoptosis. We show here that in human hepatoma cells either infected with HCV or harboring an HCV subgenomic replicon, oxidative stress failed to initiate apoptosis via Kv2.1. The HCV NS5A protein mediated this effect by inhibiting oxidative stress-induced p38 MAPK phosphorylation of Kv2.1. The inhibition of a host cell K+ channel by a viral protein is a hitherto undescribed viral anti-apoptotic mechanism and represents a potential target for antiviral therapy.


2016 ◽  
Vol 48 (11) ◽  
pp. e270-e270 ◽  
Author(s):  
In Soo Oh ◽  
Kathrin Textoris-Taube ◽  
Pil Soo Sung ◽  
Wonseok Kang ◽  
Xenia Gorny ◽  
...  

2014 ◽  
Vol 35 (4) ◽  
pp. 1303-1314 ◽  
Author(s):  
Masaaki Korenaga ◽  
Sohji Nishina ◽  
Keiko Korenaga ◽  
Yasuyuki Tomiyama ◽  
Naoko Yoshioka ◽  
...  

2006 ◽  
Vol 290 (5) ◽  
pp. G847-G851 ◽  
Author(s):  
Jinah Choi ◽  
J.-H. James Ou

Hepatitis C virus (HCV) is a major cause of viral hepatitis that can progress to hepatic fibrosis, steatosis, hepatocellular carcinoma, and liver failure. HCV infection is characterized by a systemic oxidative stress that is most likely caused by a combination of chronic inflammation, iron overload, liver damage, and proteins encoded by HCV. The increased generation of reactive oxygen and nitrogen species, together with the decreased antioxidant defense, promotes the development and progression of hepatic and extrahepatic complications of HCV infection. This review discusses the possible mechanisms of HCV-induced oxidative stress and its role in HCV pathogenesis.


2019 ◽  
Author(s):  
Camille Baudesson ◽  
Céline Amadori ◽  
Hassan Danso ◽  
Flora Donati ◽  
Quentin Nevers ◽  
...  

AbstractThe liver-specific micro-RNA-122 (miR-122) is required for the replication of hepatitis C virus (HCV). The direct interaction between miR-122 and the 5’ untranslated region of the HCV genome promotes viral replication and protects HCV RNA from degradation. Because HCV RNA is its own substrate for replication, infected cells are submitted to the sequestration of increasing levels of miR-122 and to global de-repression of host miR-122 mRNA targets. Whether and how HCV regulates miR-122 maturation to create an environment favorable to its replication remains unexplored. We discovered that Akt-dependent phosphorylation of KSRP host protein at Serine residue 193 is essential for miR-122 maturation in hepatocytes. Moreover, we showed the existence of a reciprocal regulation loop where HCV replication can modulate the proviral effect mediated by KSRP-dependent maturation of miR-122. These data support a mechanism by which HCV regulates the expression of miR-122 by hijacking KSRP, thereby fueling its own replication.


2016 ◽  
Vol 09 (03) ◽  
pp. 1650038 ◽  
Author(s):  
Aida Mojaver ◽  
Hossein Kheiri

In this paper, we deal with the problem of optimal control of a deterministic model of hepatitis C virus (HCV). In the first part of our analysis, a mathematical modeling of HCV dynamics which can be controlled by antiretroviral therapy as fixed controls has been presented and analyzed which incorporates two mechanisms: infection by free virions and the direct cell-to-cell transmission. Basic reproduction number is calculated and the existence and stability of equilibria are investigated. In the second part, the optimal control problem representing drug treatment strategies of the model is explored considering control parameters as time-dependent in order to minimize not only the population of infected cells but also the associated costs. At the end of the paper, the impact of combination of the strategies in the control of HCV and their effectiveness are compared by numerical simulation.


2014 ◽  
Vol 58 (9) ◽  
pp. 5332-5341 ◽  
Author(s):  
Cédric Laouénan ◽  
Patrick Marcellin ◽  
Martine Lapalus ◽  
Feryel Khelifa-Mouri ◽  
Nathalie Boyer ◽  
...  

ABSTRACTTriple therapy combining a protease inhibitor (PI) (telaprevir or boceprevir), pegylated interferon (PEG-IFN), and ribavirin (RBV) has dramatically increased the chance of eradicating hepatitis C virus (HCV). However, the efficacy of this treatment remains suboptimal in cirrhotic treatment-experienced patients. Here, we aimed to better understand the origin of this impaired response by estimating the antiviral effectiveness of each drug. Fifteen HCV genotype 1-infected patients with compensated cirrhosis, who were nonresponders to prior PEG-IFN/RBV therapy, were enrolled in a nonrandomized study. HCV RNA and concentrations of PIs, PEG-IFN, and RBV were frequently assessed in the first 12 weeks of treatment and were analyzed using a pharmacokinetic/viral kinetic model. The two PIs achieved similar levels of molar concentrations (P= 0.5), but there was a significant difference in the 50% effective concentrations (EC50) (P= 0.008), leading to greater effectiveness for telaprevir than for boceprevir in blocking viral production (99.8% versus 99.0%, respectively,P= 0.002). In all patients, the antiviral effectiveness of PEG-IFN was modest (43.4%), and there was no significant contribution of RBV exposure to the total antiviral effectiveness. The second phase of viral decline, which is attributed to the loss rate of infected cells, was slow (0.19 day−1) and was higher in patients who subsequently eradicated HCV (P= 0.03). The two PIs achieved high levels of antiviral effectiveness. However, the suboptimal antiviral effectiveness of PEG-IFN/RBV and the low loss of infected cells suggest that a longer treatment duration might be needed in cirrhotic treatment-experienced patients and that a future IFN-free regimen may be particularly beneficial in these patients.


2018 ◽  
Vol 92 (13) ◽  
Author(s):  
Chieko Matsui ◽  
Lin Deng ◽  
Nanae Minami ◽  
Takayuki Abe ◽  
Kazuhiko Koike ◽  
...  

ABSTRACT Hepatitis C virus (HCV) infection is closely associated with type 2 diabetes. We reported that HCV infection induces the lysosomal degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) via interaction with HCV nonstructural protein 5A (NS5A) protein, thereby suppressing GLUT2 gene expression. The molecular mechanisms of selective degradation of HNF-1α caused by NS5A are largely unknown. Chaperone-mediated autophagy (CMA) is a selective lysosomal degradation pathway. Here, we investigated whether CMA is involved in the selective degradation of HNF-1α in HCV-infected cells and observed that the pentapeptide spanning from amino acid (aa) 130 to aa 134 of HNF-1α matches the rule for the CMA-targeting motif, also known as KFERQ motif. A cytosolic chaperone protein, heat shock cognate protein of 70 kDa (HSC70), and a lysosomal membrane protein, lysosome-associated membrane protein type 2A (LAMP-2A), are key components of CMA. Immunoprecipitation analysis revealed that HNF-1α was coimmunoprecipitated with HSC70, whereas the Q130A mutation (mutation of Q to A at position 130) of HNF-1α disrupted the interaction with HSC70, indicating that the CMA-targeting motif of HNF-1α is important for the association with HSC70. Immunoprecipitation analysis revealed that increasing amounts of NS5A enhanced the association of HNF-1α with HSC70. To determine whether LAMP-2A plays a role in the degradation of HNF-1α protein, we knocked down LAMP-2A mRNA by RNA interference; this knockdown by small interfering RNA (siRNA) recovered the level of HNF-1α protein in HCV J6/JFH1-infected cells. This result suggests that LAMP-2A is required for the degradation of HNF-1α. Immunofluorescence study revealed colocalization of NS5A and HNF-1α in the lysosome. Based on our findings, we propose that HCV NS5A interacts with HSC70 and recruits HSC70 to HNF-1α, thereby promoting the lysosomal degradation of HNF-1α via CMA. IMPORTANCE Many viruses use a protein degradation system, such as the ubiquitin-proteasome pathway or the autophagy pathway, for facilitating viral propagation and viral pathogenesis. We investigated the mechanistic details of the selective lysosomal degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) induced by hepatitis C virus (HCV) NS5A protein. Using site-directed mutagenesis, we demonstrated that HNF-1α contains a pentapeptide chaperone-mediated autophagy (CMA)-targeting motif within the POU-specific domain of HNF-1α. The CMA-targeting motif is important for the association with HSC70. LAMP-2A is required for degradation of HNF-1α caused by NS5A. We propose that HCV NS5A interacts with HSC70, a key component of the CMA machinery, and recruits HSC70 to HNF-1α to target HNF-1α for CMA-mediated lysosomal degradation, thereby facilitating HCV pathogenesis. We discovered a role of HCV NS5A in CMA-dependent degradation of HNF-1α. Our results may lead to a better understanding of the role of CMA in the pathogenesis of HCV.


Sign in / Sign up

Export Citation Format

Share Document