Population structure of the primary malaria vector in South America, Anopheles darlingi, using isozyme, random amplified polymorphic DNA, internal transcribed spacer 2, and morphologic markers.

1999 ◽  
Vol 60 (3) ◽  
pp. 364-376 ◽  
Author(s):  
S Manguin ◽  
J A Danoff-Burg ◽  
R C Wilkerson ◽  
J E Conn ◽  
D R Roberts ◽  
...  
BMC Ecology ◽  
2008 ◽  
Vol 8 (1) ◽  
pp. 3 ◽  
Author(s):  
Lisa Mirabello ◽  
Joseph H Vineis ◽  
Stephen P Yanoviak ◽  
Vera M Scarpassa ◽  
Marinete M Póvoa ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
James M. Hodge ◽  
Andrey A. Yurchenko ◽  
Dmitriy A. Karagodin ◽  
Reem A. Masri ◽  
Ryan C. Smith ◽  
...  

Abstract Background The malaria mosquito Anopheles punctipennis, a widely distributed species in North America, is capable of transmitting human malaria and is actively involved in the transmission of the ungulate malaria parasite Plasmodium odocoilei. However, molecular diagnostic tools based on Internal Transcribed Spacer 2 (ITS2) of ribosomal DNA are lacking for this species. Anopheles punctipennis is a former member of the Anopheles maculipennis complex but its systematic position remains unclear. Methods In this study, ITS2 sequences were obtained from 276 An. punctipennis specimens collected in the eastern and midwestern United States and a simple and robust Restriction Fragment Length Polymorphism approach for species identification was developed. The maximum-likelihood phylogenetic tree was constructed based on ITS2 sequences available through this study and from GenBank for 20 species of Anopheles. Results The analysis demonstrated a consistent ITS2 sequence length and showed no indications of intragenomic variation among the samples based on ITS2, suggesting that An. punctipennis represents a single species in the studied geographic locations. In this study, An. punctipennis was found in urban, rural, and forest settings, suggesting its potential broad role in pathogen transmission. Phylogeny based on ITS2 sequence comparison demonstrated the close relationship of this species with other members of the Maculipennis group. Conclusions This study developed molecular tools based on ITS2 sequences for the malaria vector An. punctipennis and clarified the phylogenetic position of the species within the Maculipennis group.


2006 ◽  
Vol 74 (5) ◽  
pp. 798-806 ◽  
Author(s):  
JAN E. CONN ◽  
RICHARD C. WILKERSON ◽  
JOSEPH H. VINEIS ◽  
DAVID Y. ONYABE ◽  
MARINETE M. PÓVOA ◽  
...  

2020 ◽  
Author(s):  
James M. Hodge ◽  
Andrey A. Yurchenko ◽  
Dmitriy A. Karagodin ◽  
Reem A. Masri ◽  
Ryan C. Smith ◽  
...  

Abstract Background: The malaria mosquito Anopheles punctipennis Say, a widely distributed species in North America, is capable of transmitting human malaria and is actively involved in the transmission of the ungulate malaria parasite Plasmodium odocoilei. However, molecular diagnostic tools based on Internal Transcribed Spacer 2 (ITS2) of ribosomal DNA are lacking for An. punctipennis. An. punctipennis is a former member of the Anopheles maculipennis complex but its systematic position remains unclear. Results: In this study, we collected and sequenced ITS2 from 276 An. punctipennis specimens collected from the eastern and midwestern United States. Our analysis demonstrated a consistent sequence length and showed no indications of intragenomic variation among the samples based on ITS2, suggesting that An. punctipennis represents a single species in the studied geographic locations. In addition to the ITS2 sequence-based molecular tool, we developed a simple and robust Restriction Length Polymorphism approach for species identification. An. punctipennis was found in urban, rural, and forest settings, suggesting its potential broad role in pathogen transmission. Phylogeny based on ITS2 sequence comparison demonstrated the close relationship of this species with other members of the Maculipennis group. Conclusions: This study developed molecular tools based on ITS2 sequences for the malaria vector An. punctipennis and clarified the phylogenetic position of the species within the Maculipennis group.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Melina Campos ◽  
Luisa D. P. Rona ◽  
Katie Willis ◽  
George K. Christophides ◽  
Robert M. MacCallum

Abstract Background Whole genome re-sequencing provides powerful data for population genomic studies, allowing robust inferences of population structure, gene flow and evolutionary history. For the major malaria vector in Africa, Anopheles gambiae, other genetic aspects such as selection and adaptation are also important. In the present study, we explore population genetic variation from genome-wide sequencing of 765 An. gambiae and An. coluzzii specimens collected from across Africa. We used t-SNE, a recently popularized dimensionality reduction method, to create a 2D-map of An. gambiae and An. coluzzii genes that reflect their population structure similarities. Results The map allows intuitive navigation among genes distributed throughout the so-called “mainland” and numerous surrounding “island-like” gene clusters. These gene clusters of various sizes correspond predominantly to low recombination genomic regions such as inversions and centromeres, and also to recent selective sweeps. Because this mosquito species complex has been studied extensively, we were able to support our interpretations with previously published findings. Several novel observations and hypotheses are also made, including selective sweeps and a multi-locus selection event in Guinea-Bissau, a known intense hybridization zone between An. gambiae and An. coluzzii. Conclusions Our results present a rich dataset that could be utilized in functional investigations aiming to shed light onto An. gambiae s.l genome evolution and eventual speciation. In addition, the methodology presented here can be used to further characterize other species not so well studied as An. gambiae, shortening the time required to progress from field sampling to the identification of genes and genomic regions under unique evolutionary processes.


Sign in / Sign up

Export Citation Format

Share Document