scholarly journals Unravelling population structure heterogeneity within the genome of the malaria vector Anopheles gambiae

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Melina Campos ◽  
Luisa D. P. Rona ◽  
Katie Willis ◽  
George K. Christophides ◽  
Robert M. MacCallum

Abstract Background Whole genome re-sequencing provides powerful data for population genomic studies, allowing robust inferences of population structure, gene flow and evolutionary history. For the major malaria vector in Africa, Anopheles gambiae, other genetic aspects such as selection and adaptation are also important. In the present study, we explore population genetic variation from genome-wide sequencing of 765 An. gambiae and An. coluzzii specimens collected from across Africa. We used t-SNE, a recently popularized dimensionality reduction method, to create a 2D-map of An. gambiae and An. coluzzii genes that reflect their population structure similarities. Results The map allows intuitive navigation among genes distributed throughout the so-called “mainland” and numerous surrounding “island-like” gene clusters. These gene clusters of various sizes correspond predominantly to low recombination genomic regions such as inversions and centromeres, and also to recent selective sweeps. Because this mosquito species complex has been studied extensively, we were able to support our interpretations with previously published findings. Several novel observations and hypotheses are also made, including selective sweeps and a multi-locus selection event in Guinea-Bissau, a known intense hybridization zone between An. gambiae and An. coluzzii. Conclusions Our results present a rich dataset that could be utilized in functional investigations aiming to shed light onto An. gambiae s.l genome evolution and eventual speciation. In addition, the methodology presented here can be used to further characterize other species not so well studied as An. gambiae, shortening the time required to progress from field sampling to the identification of genes and genomic regions under unique evolutionary processes.

2019 ◽  
Author(s):  
◽  
Chris S Clarkson ◽  
Alistair Miles ◽  
Nicholas J Harding ◽  
Eric R Lucas ◽  
...  

AbstractMosquito control remains a central pillar of efforts to reduce malaria burden in sub-Saharan Africa. However, insecticide resistance is entrenched in malaria vector populations, and countries with high malaria burden face a daunting challenge to sustain malaria control with a limited set of surveillance and intervention tools. Here we report on the second phase of a project to build an open resource of high quality data on genome variation among natural populations of the major African malaria vector species Anopheles gambiae and Anopheles coluzzii. We analysed whole genomes of 1,142 individual mosquitoes sampled from the wild in 13 African countries, and a further 234 individuals comprising parents and progeny of 11 lab crosses. The data resource includes high confidence single nucleotide polymorphism (SNP) calls at 57 million variable sites, genome-wide copy number variation (CNV) calls, and haplotypes phased at biallelic SNPs. We used these data to analyse genetic population structure, and characterise genetic diversity within and between populations. We also illustrate the utility of these data by investigating species differences in isolation by distance, genetic variation within proposed gene drive target sequences, and patterns of resistance to pyrethroid insecticides. This data resource provides a foundation for developing new operational systems for molecular surveillance, and for accelerating research and development of new vector control tools.


2012 ◽  
Vol 6 (08) ◽  
pp. 637-643 ◽  
Author(s):  
Andrew Ambogo Obala ◽  
Helen L Kutima ◽  
Henry D.N. Nyamogoba ◽  
Anne W Mwangi ◽  
Chrispinus J Simiyu ◽  
...  

Introduction: This study was conducted in a sugar belt region of western Kenya interfacing epidemic and endemic malaria transmission. We investigated Anopheles gambiae sensu stricto (ss) and Anopheles arabiensis species compositions and densities, human host choice, and infectivity. Methodology: Mosquitoes were captured using pyrethrum spray catch technique and first identified based on morphology; species were confirmed by PCR. Blood meal preference and sporozoite rates were determined by ELISA. Parity rates and entomological inoculation rates (EIR) were determined. Seasonal densities were compared against environmental temperatures, relative humidity and rainfall. Results: In total 2,426 An. gambiae were collected.  Out of 1,687 female blood-fed mosquitoes, 272 were randomly selected for entomological tests. An. gambiae ss and An. arabiensis comprised 75% (205/272) and 25% (68/272) of the selection, respectively. An. gambiae ss had higher preference for human blood (97%; n=263/272) compared with An. arabiensis, which mostly fed on bovines (88%; n=239/272).  The sporozoite and parity rates were 6% (16/272) and 66% (179/272) for An. gambiae ss and 2% (4/272) and 53% (144/272) for An. arabiensis respectively, while EIR was 0.78 infective bites/person/night.  Climate (ANOVA; F=14.2; DF=23) and temperature alone (r=0.626; t=3.75; p=0.001) were significantly correlated with vector densities. Conclusion: An. gambiae ss are the most efficient malaria vector mosquito species in Kopere village. Because An. gambiae ss largely rests and feeds indoors, use of indoor residual spray and insecticide-treated nets is likely the most suitable approach to malaria vector control in Kopere village and other parts of Kenya where this species is abundant. 


2021 ◽  
Author(s):  
Shirley A. Onyango ◽  
Kevin O. Ochwedo ◽  
Maxwell G. Machani ◽  
Collince J. Omondi ◽  
Isaiah Debrah ◽  
...  

Abstract BackgroundEvolutionary pressures lead to the selection of efficient malaria vectors either resistant or susceptible to Plasmodiumparasites.These forcesmay elevate the introduction of new species genotypes that adapt to new breeding habitats which could have serious implications on malaria transmission.Thioester-containing protein 1 (TEP1) of Anopheles gambiaeplays an important role in innate immune defenses against parasites. This study aims to characterize the distribution pattern of TEP1 polymorphisms determining vector competence and subsequently malaria transmission in western Kenya. MethodsAnopheles gambiaeadult and larvae were collected using pyrethrum spray catches (PSC) and plastic dippers respectivelyfrom Homa Bay, Kakamega, Bungoma, and Kisumu countiesbetween 2017 and 2020.Collected adults and larvae reared to the adult stage were morphologically identified and then identified to sibling species by PCR.TEP1 alleles were determined using restriction fragment length polymorphisms-polymerase chain reaction (RFLP-PCR) and to validate the TEP1 genotyping results, a representative sample of alleles was sequenced.ResultsTwo TEP1 alleles (TEP1*S1 and TEP1*R2)and three corresponding genotypes (*S1/S1, *R2/S1, and *R2/R2)were identified. TEP1*S1 and TEP1*R2 with their corresponding genotypes, homozygous *S1/S1 and heterozygous *R2/S1 were widely distributed across all sites with allele frequencies of approximately 80% and 20%, respectively bothin An. gambiaeand An. arabiensis. There was no significant difference detected among the population and between the two mosquito species in TEP1 allele frequency and genotype frequency. The overall low levels in population structure (FST= 0.019) across all sites corresponded to an effective migration index (Nm= 12.571) and lowNei’s genetic distance values (<0.500) among the subpopulation.The comparative fixation index values revealed minimal genetic differentiation between speciesand high levels of gene flow among populations.ConclusionThere is a low genetic diversity and population structure in western Kenya. TEP1* R2 and TEP1*S1 were the most common alleles in both species which may have been maintained through generations in time, However, the TEP1*R2 allele was in low frequencies and may be used to estimatemalaria prevalence. Continued surveillance of the distribution of TEP1 is essential for monitoring the population dynamics of local vectors and their implications on malaria transmission and hence designing targeted vector interventions.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Xiaoting Xia ◽  
Shunjin Zhang ◽  
Huaju Zhang ◽  
Zijing Zhang ◽  
Ningbo Chen ◽  
...  

Abstract Background Native cattle breeds are an important source of genetic variation because they might carry alleles that enable them to adapt to local environment and tough feeding conditions. Jiaxian Red, a Chinese native cattle breed, is reported to have originated from crossbreeding between taurine and indicine cattle; their history as a draft and meat animal dates back at least 30 years. Using whole-genome sequencing (WGS) data of 30 animals from the core breeding farm, we investigated the genetic diversity, population structure and genomic regions under selection of Jiaxian Red cattle. Furthermore, we used 131 published genomes of world-wide cattle to characterize the genomic variation of Jiaxian Red cattle. Results The population structure analysis revealed that Jiaxian Red cattle harboured the ancestry with East Asian taurine (0.493), Chinese indicine (0.379), European taurine (0.095) and Indian indicine (0.033). Three methods (nucleotide diversity, linkage disequilibrium decay and runs of homozygosity) implied the relatively high genomic diversity in Jiaxian Red cattle. We used θπ, CLR, FST and XP-EHH methods to look for the candidate signatures of positive selection in Jiaxian Red cattle. A total number of 171 (θπ and CLR) and 17 (FST and XP-EHH) shared genes were identified using different detection strategies. Functional annotation analysis revealed that these genes are potentially responsible for growth and feed efficiency (CCSER1), meat quality traits (ROCK2, PPP1R12A, CYB5R4, EYA3, PHACTR1), fertility (RFX4, SRD5A2) and immune system response (SLAMF1, CD84 and SLAMF6). Conclusion We provide a comprehensive overview of sequence variations in Jiaxian Red cattle genomes. Selection signatures were detected in genomic regions that are possibly related to economically important traits in Jiaxian Red cattle. We observed a high level of genomic diversity and low inbreeding in Jiaxian Red cattle. These results provide a basis for further resource protection and breeding improvement of this breed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexandre Perochon ◽  
Harriet R. Benbow ◽  
Katarzyna Ślęczka-Brady ◽  
Keshav B. Malla ◽  
Fiona M. Doohan

AbstractThere is increasing evidence that some functionally related, co-expressed genes cluster within eukaryotic genomes. We present a novel pipeline that delineates such eukaryotic gene clusters. Using this tool for bread wheat, we uncovered 44 clusters of genes that are responsive to the fungal pathogen Fusarium graminearum. As expected, these Fusarium-responsive gene clusters (FRGCs) included metabolic gene clusters, many of which are associated with disease resistance, but hitherto not described for wheat. However, the majority of the FRGCs are non-metabolic, many of which contain clusters of paralogues, including those implicated in plant disease responses, such as glutathione transferases, MAP kinases, and germin-like proteins. 20 of the FRGCs encode nonhomologous, non-metabolic genes (including defence-related genes). One of these clusters includes the characterised Fusarium resistance orphan gene, TaFROG. Eight of the FRGCs map within 6 FHB resistance loci. One small QTL on chromosome 7D (4.7 Mb) encodes eight Fusarium-responsive genes, five of which are within a FRGC. This study provides a new tool to identify genomic regions enriched in genes responsive to specific traits of interest and applied herein it highlighted gene families, genetic loci and biological pathways of importance in the response of wheat to disease.


2021 ◽  
Vol 22 (7) ◽  
pp. 3477
Author(s):  
Julia Zaborowska ◽  
Bartosz Łabiszak ◽  
Annika Perry ◽  
Stephen Cavers ◽  
Witold Wachowiak

Mountain plants, challenged by vegetation time contractions and dynamic changes in environmental conditions, developed adaptations that help them to balance their growth, reproduction, survival, and regeneration. However, knowledge regarding the genetic basis of species adaptation to higher altitudes remain scarce for most plant species. Here, we attempted to identify such corresponding genomic regions of high evolutionary importance in two closely related European pines, Pinus mugo and P. uncinata, contrasting them with a reference lowland relative—P. sylvestris. We genotyped 438 samples at thousands of single nucleotide polymorphism (SNP) markers, tested their genetic differentiation and population structure followed by outlier detection and gene ontology annotations. Markers clearly differentiated the species and uncovered patterns of population structure in two of them. In P. uncinata three Pyrenean sites were grouped together, while two outlying populations constituted a separate cluster. In P. sylvestris, Spanish population appeared distinct from the remaining four European sites. Between mountain pines and the reference species, 35 candidate genes for altitude-dependent selection were identified, including such encoding proteins responsible for photosynthesis, photorespiration and cell redox homeostasis, regulation of transcription, and mRNA processing. In comparison between two mountain pines, 75 outlier SNPs were found in proteins involved mainly in the gene expression and metabolism.


Author(s):  
Gaotian Zhang ◽  
Jake D Mostad ◽  
Erik C Andersen

Abstract Life history traits underlie the fitness of organisms and are under strong natural selection. A new mutation that positively impacts a life history trait will likely increase in frequency and become fixed in a population (e.g. a selective sweep). The identification of the beneficial alleles that underlie selective sweeps provides insights into the mechanisms that occurred during the evolution of a species. In the global population of Caenorhabditis elegans, we previously identified selective sweeps that have drastically reduced chromosomal-scale genetic diversity in the species. Here, we measured the fecundity of 121 wild C. elegans strains, including many recently isolated divergent strains from the Hawaiian islands and found that strains with larger swept genomic regions have significantly higher fecundity than strains without evidence of the recent selective sweeps. We used genome-wide association (GWA) mapping to identify three quantitative trait loci (QTL) underlying the fecundity variation. Additionally, we mapped previous fecundity data from wild C. elegans strains and C. elegans recombinant inbred advanced intercross lines that were grown in various conditions and detected eight QTL using GWA and linkage mappings. These QTL show the genetic complexity of fecundity across this species. Moreover, the haplotype structure in each GWA QTL region revealed correlations with recent selective sweeps in the C. elegans population. North American and European strains had significantly higher fecundity than most strains from Hawaii, a hypothesized origin of the C. elegans species, suggesting that beneficial alleles that caused increased fecundity could underlie the selective sweeps during the worldwide expansion of C. elegans.


Sign in / Sign up

Export Citation Format

Share Document