genomic studies
Recently Published Documents


TOTAL DOCUMENTS

1124
(FIVE YEARS 567)

H-INDEX

54
(FIVE YEARS 12)

2022 ◽  
Author(s):  
Matthew Dapas ◽  
Andrea Dunaif

Abstract Polycystic ovary syndrome (PCOS) is among the most common disorders of reproductive-age women, affecting up to 15% worldwide, depending on the diagnostic criteria. PCOS is characterized by a constellation of interrelated reproductive abnormalities including disordered gonadotropin secretion, increased androgen production, chronic anovulation, and polycystic ovarian morphology. It is frequently associated with insulin resistance and obesity. These reproductive and metabolic derangements cause major morbidities across the lifespan, including anovulatory infertility and type 2 diabetes (T2D). Despite decades of investigative effort, the etiology of PCOS remains unknown. Familial clustering of PCOS cases has indicated a genetic contribution to PCOS. There are rare Mendelian forms of PCOS associated with extreme phenotypes, but PCOS typically follows a non-Mendelian pattern of inheritance consistent with a complex genetic architecture, analogous to T2D and obesity, that reflects the interaction of susceptibility genes and environmental factors. Genomic studies of PCOS have provided important insights into disease pathways and have indicated that current diagnostic criteria do not capture underlying differences in biology associated with different forms of PCOS. We provide a state-of-the-science review of genetic analyses of PCOS, including an overview of genomic methodologies aimed at a general audience of non-geneticists and clinicians. Applications in PCOS will be discussed, including strengths and limitations of each study. The contributions of environmental factors, including developmental origins, will be reviewed. Insights into the pathogenesis and genetic architecture of PCOS will be summarized. Future directions for PCOS genetic studies will be outlined.


2022 ◽  
Author(s):  
Albano Pinto ◽  
Catarina Cunha ◽  
Raquel Chaves ◽  
Matthew ER Butchbach ◽  
Filomena Adega

Abstract Transposable elements (TEs) are interspersed repetitive DNA sequences with the ability to mobilize in the genome. The recent development of improved tools for evaluating TE-derived sequences in genomic studies has enabled an increasing attention to the contribution of TEs to human development and disease. Spinal muscular atrophy (SMA) is an autosomal recessive motor neuron disease that is caused by deletions or mutations in the Survival Motor Neuron 1 (SMN1) gene. SMN2 gene is a nearly perfect duplication of SMN1. Both genes (collectively known as SMN1/SMN2) are highly enriched in TEs. A comprehensive analysis of TEs insertions in the SMN1/2 loci of SMA carriers, patients and healthy/control individuals was completed to perceive TE dynamics in SMN1/2 and try to establish a link between these elements and SMA.We found an Alu insertion in the promoter region and one L1 element in the 3’UTR that likely play an important role as an alternative promoter and as an alternative terminator to the gene, respectively. Additionally, the several Alu repeats inserted in the genes’ introns influence splicing, giving rise to alternative splicing events that cause RNA circularization and the birth of new alternative exons. These Alu repeats present throughout the genes are also prone to recombination events that can lead to SMN1 exons deletions, that ultimately lead to SMA. The many good and bad implications associated with the presence of TEs inside SMN1/2 make this genomic region ideal for understanding the implications of TEs on genomic evolution as well as on human genomic disease.


2022 ◽  
Author(s):  
Hugo Darras ◽  
Natalia de Souza Araujo ◽  
Lyam Baudry ◽  
Nadege Guiglielmoni ◽  
Pedro Lorite ◽  
...  

Cataglyphis are thermophilic ants that forage during the day when temperatures are highest and sometimes close to their critical thermal limit. Several Cataglyphis species have evolved unusual reproductive systems such as facultative queen parthenogenesis or social hybridogenesis, which have not yet been investigated in detail at the molecular level. We generated high-quality genome assemblies for two hybridogenetic lineages of the Iberian ant Cataglyphis hispanica using long-read Nanopore sequencing and exploited chromosome conformation capture (3C) sequencing to assemble contigs into 26 and 27 chromosomes, respectively. Males of one lineage were karyotyped to confirm the number of chromosomes inferred from 3C data. We obtained transcriptomic data to assist gene annotation and built custom repeat libraries for each of the two assemblies. Comparative analyses with 19 other published ant genomes were also conducted. These new genomic resources pave the way for exploring the genetic mechanisms underlying the remarkable thermal adaptation and the molecular mechanisms associated with transitions between different genetic systems characteristics of the ant genus Cataglyphis.


2022 ◽  
pp. 80-85
Author(s):  
A. V. Mezentsev ◽  
M. M. Karapetyan ◽  
V. V. Sobolev ◽  
O. V. Zhukova ◽  
I. M. Korsunskaya

In this paper, we discuss what biomarkers to choose if there is a need to describe the results of laser therapy targeting keloid skin. We elevate the known cytomarkers (Krt14, Lgals7, Krt5, Dcn, Lum, Igfbp5, Cd31, Vwf, Stambpl1, Uqcrb, Cd3 and Acta2), biomarkers of the inflammatory response (Cd45/Ptprc, Adgre1, Ly6g, Il1b, Il4, Il13, Il22, Cxcl2 и Ccl17), as well as the proteins of extracellular matrix (type I and III collagens; precursors of COL5A1 and COLA1A; FTL, COL3A1, PGLS, CNN2, ANXA2, TPSAB1, COL12A1, precursors of APCS and ALB), and their encoding genes (FGF7, BAX, CCND1, MMP3, MMP9, CXCL1, -2, -5, -6 and -12; IL8, S100A7 and IL1A), those expression and co-location may potentially change the appearance and internal structure of damaged skin. We also describe how to choose biomarkers using the results genomic studies and their limitations. Moreover, we provide examples of how different groups of gene and protein biomarkers are used in experimental biology and clinical practice. According to the previously published data, well-known biomarkers verified on animal models, depend on their biological effects, let to characterize structural changes and changes in the composition of cells represented at the site of damage before and after the treatment. In addition, the published experimental and clinical data provide an opportunity to analyze the efficiency of new experimental approaches and compare them to each other.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Manisha Krishnan ◽  
Madhavi D. Senagolage ◽  
Jeremy T. Baeten ◽  
Donald J. Wolfgeher ◽  
Saira Khan ◽  
...  

AbstractCUX1, encoding a homeodomain-containing transcription factor, is recurrently deleted or mutated in multiple tumor types. In myeloid neoplasms, CUX1 deletion or mutation carries a poor prognosis. We have previously established that CUX1 functions as a tumor suppressor in hematopoietic cells across multiple organisms. Others, however, have described oncogenic functions of CUX1 in solid tumors, often attributed to truncated CUX1 isoforms, p75 and p110, generated by an alternative transcriptional start site or post-translational cleavage, respectively. Given the clinical relevance, it is imperative to clarify these discrepant activities. Herein, we sought to determine the CUX1 isoforms expressed in hematopoietic cells and find that they express the full-length p200 isoform. Through the course of this analysis, we found no evidence of the p75 alternative transcript in any cell type examined. Using an array of orthogonal approaches, including biochemistry, proteomics, CRISPR/Cas9 genomic editing, and analysis of functional genomics datasets across a spectrum of normal and malignant tissue types, we found no data to support the existence of the CUX1 p75 isoform as previously described. Based on these results, prior studies of p75 require reevaluation, including the interpretation of oncogenic roles attributed to CUX1.


2022 ◽  
Vol 11 (1) ◽  
pp. e29611124799
Author(s):  
Cristiane Rodrigues Silva ◽  
Rafael Monção Miller ◽  
Bárbara Costa Pereira ◽  
Lílian Aveleda ◽  
Victor Augustus Marin

A genomic analysis of the potential application of a Serratia marcescens strain in the plant-growth promotion. We performed whole-genome sequencing of Serratia marcescens isolated from a Minas Frescal Cheese. The genomic repertoire revealed a bacterium of agricultural and biotechnological interest. In the plant-growth promotion traits, we highlight genes encoding proteins possibly responsible for the biosynthesis of phytohormone indole acetic acid, organic compounds that act in iron uptake, and the Phosphate solubilization system. Genes encoding for enzymes like the versatile L-asparaginase stimulates the development of seeds and grains and can benefit the food industry due to a mitigation effect on acrylamide and notably, has medical applications as a chemotherapeutic agent or is applicable by its antimicrobial and anti-inflammatory properties. Moreover, functional diversity of genes encoding for resistance to different metals and metabolism of xenobiotics genes can be found in this strain, reinforcing its biotechnological potential. The versatile enzymes that can be produced by S. marcescens benefit the food, pharmaceutical, textile, agronomic, and cosmetic industries. The relevant genetic systems of S. marcescens described here may be used to promote plant growth and health and improve the environment. To the best of our knowledge, this is the first genome sequence report on S. marcescens isolated from cheese, with potential application as promoting plant growth and providing a baseline for future genomic studies on the development of this species.


2022 ◽  
Vol 78 (02) ◽  
pp. 6622-2022
Author(s):  
ALEKSANDRA GIZA ◽  
EWELINA IWAN ◽  
DARIUSZ WASYL

High throughput sequencing (HTS) creates an opportunity for comprehensive genomic studies. It can be applied in veterinary science, bacteriology and virology, diagnostics of animal diseases, food safety, examinations of the composition of environmental samples, and even in veterinary vaccinology. Thus HTS a wide-ranging method that can be applied in different areas of the One Health approach. In particular, the whole genome sequencing (WGS) of bacteria is routinely used in food hygiene and outbreak investigations for phylogenetic analysis of pathogenic bacteria isolated from various sources across timeline, molecular characterisation of bacteria, plasmids, antibiotic resistance and identification of virulence factors. Metagenomics can be used to characterize the composition of microbiota in environmental samples. It makes it possible to obtain a taxonomic identification of bacteria, fungi or plants present in a metasample. It can also be used for the monitoring and epidemiological tracing of viruses, such as SARS-CoV-2. The transcriptomic approach makes it possible to study the expression of genes associated with various infections and diseases. HTS is a highly versatile method, but the selection of the proper application is crucial to obtain expected outcomes. The paper presents some HTS approaches and examples of research in veterinary science.


Author(s):  
Kumar Saurabh Singh ◽  
Rishi De-Kayne ◽  
Kennedy Saitoti Omufwoko ◽  
Dino J Martins ◽  
Chris Bass ◽  
...  

Abstract Milkweed butterflies in the genus Danaus are studied in a diverse range of research fields including the neurobiology of migration, biochemistry of plant detoxification, host-parasite interactions, evolution of sex chromosomes, and speciation. We have assembled a nearly chromosomal genome for Danaus chrysippus (known as the African Monarch, African Queen, and Plain Tiger) using long read sequencing data. This species is of particular interest for the study of genome structural change and its consequences for evolution. Comparison with the genome of the North American Monarch Danaus plexippus reveals generally strong synteny, but highlights three inversion differences. The three chromosomes involved were previously found to carry peaks of intra-specific differentiation in D. chrysippus in Africa, suggesting that these inversions may be polymorphic and associated with local adaptation. The D. chrysippus genome is over 40% larger than that of D. plexippus, and nearly all of the additional ∼100 Megabases of DNA comprises repeats. Future comparative genomic studies within this genus will shed light on the evolution of genome architecture.


Biomedicine ◽  
2021 ◽  
Vol 41 (4) ◽  
pp. 714-719
Author(s):  
Jyotirmayee Bahinipati ◽  
Rajlaxmi Sarangi ◽  
Sanjukta Mishra ◽  
Srikrushna Mahapatra

Individual’s genetic makeup best describes the properties regarding its growth and development. It is stored and passed on to generations and is in dynamic equilibrium with the environmental and other non-living factors. The most predominant environmental stimuli are diet/nutrition.  Diet/nutrition interacts and modulates varying underlying molecular mechanisms central to various physiological functions basically at three different levels: genome, proteome, and metabolome. Advances in genomic studies are paving the way to the development of scientific insights into nutritional sciences. Nutrigenetics and nutrigenomics are closely associated but two different areas of nutritional research. Both the fields involved the study of the implication between nutrition, metabolism, and genetic mechanism. The primary goal is to pinpoint nutrient-dependent health characteristics and nutrition dependent diseases. Another important area connected to these sciences concerns food composition and performance of quality assessment by studying proteomics and metabolic pathways. Nutrigenomics explains how the nutrients influences or effects the expression of the, while the response of different gene variants to nutrients or different dietary components is called Nutrigenetics. A personalized based diet can help us to know the right nutrient to take or avoid those who may potentially harm overall health. The goals are intended to alter or decrease the impact of hostile dietary changes that have occurred in since past in the developed world and more recently in the developing countries.


2021 ◽  
Author(s):  
Caio Robledo D' Angioli Costa Quaio ◽  
Jose Ricardo Magliocco Ceroni ◽  
Murilo Castro Cervato ◽  
Helena Strelow Thurow ◽  
Caroline Monaco Moreira ◽  
...  

Abstract Genomic studies may generate massive amounts of data, bringing interpretation challenges. Efforts for the differentiation of benign and pathogenic variants gain importance.In this article, we used segregation analysis and other molecular data to reclassify to benign or likely benign several rare clinically curated variants of autosomal dominant inheritance from a cohort of 500 Brazilian patients with rare diseases.This study included only symptomatic patients who had undergone molecular investigation with exome sequencing for suspected diseases of genetic etiology. Variants clinically suspected as the causative etiology and harbored by genes associated with highly-penetrant conditions of autosomal dominant inheritance underwent Sanger confirmation in the proband and inheritance pattern determination because a “de novo” event was expected.Among all 327 variants studied, 321 variants were inherited from asymptomatic parents. Considering segregation analysis, we have reclassified 51 rare variants as benign (n=51) and 211 as likely benign (n=211).In our study, the inheritance of a highly penetrant variant expected to be de novo for pathogenicity assumption was considered as a non-segregation and, therefore, a key step for benign or likely benign classification. Studies like ours may help to identify rare benign variants and improve the correct interpretation of genetic findings.


Sign in / Sign up

Export Citation Format

Share Document