Influence of Fuel Injection Timing Over the Performances of a Direct Injection Spark Ignition Engine

Author(s):  
Rakosi Edward ◽  
Rosca Radu ◽  
Gaiginschi Radu
Author(s):  
Mohammad Fatouraie ◽  
Margaret S. Wooldridge ◽  
Benjamin R. Petersen ◽  
Steven T. Wooldridge

The effects of ethanol on spray development and wall impingement of a direct injection spark ignition (DISI) engine was investigated using high-speed imaging of the fuel spray in an optically-accessible engine. Neat anhydrous ethanol (E100), reference grade gasoline (E0) and a 50% blend (by volume) of gasoline and ethanol (E50) were used in the study. The experiments were conducted using continuous firing conditions for an intake manifold absolute pressure of 57 kPA, and engine speed of 1500 RPM. Retarded fuel injection timing was used (with start of injection at 250 °bTDC) to isolate the effects of cylinder wall impingement, and lean fuel-to-air ratios (ϕ=0.8–0.9) were used to minimize sooting and coating of the transparent cylinder liner. The effects of three engine coolant temperatures (25, 60 and 90 °C) and two fuel rail pressures (100 and 150 bar) on the features of the spray and the spray interaction with the wall were studied for the different fuels. Quantitative metrics were defined to analyze the spatial features of the spray related to wall impingement. Gasoline (E0) sprays exhibited higher sensitivity to coolant temperature compared to ethanol (E100) in terms of the shape of the spray and wall impingement. Higher fuel injection pressure increased the spray tip penetration rate and fuel impingement with the wall for E0 and E100, despite creating wider plume angles of the fuel sprays.


2019 ◽  
Vol 21 (2) ◽  
pp. 302-318 ◽  
Author(s):  
Carl-Philipp Ding ◽  
David Vuilleumier ◽  
Namho Kim ◽  
David L Reuss ◽  
Magnus Sjöberg ◽  
...  

Mid-level ethanol/gasoline blends can provide knock resistance benefits for stoichiometric spark-ignition engine operation, but previous studies have identified challenges associated with spray impingement and wall wetting, leading to excessive particulate matter emissions. At the same time, stratified-charge spark-ignition operation can provide increased thermal efficiency, but care has to be exercised to avoid excessive in-cylinder soot formation. In support of the use of mid-level ethanol/gasoline blends in advanced spark-ignition engines, this study presents spray and fuel-film measurements in a direct-injection spark-ignition engine operated with a 30 vol.%/70 vol.% ethanol/gasoline blend (E30). Crank-angle resolved fuel-film measurements at the piston surface are conducted using two different implementations of the refractive index matching technique. A small-angle refractive index matching implementation allows quantification of the wetted area, while a large-angle refractive index matching implementation enables semi-quantitative measurements of fuel-film thickness and volume, in addition to fuel-film area. The fuel-film measurements show that both the amount of fuel deposited on the piston and the shape of the fuel-film patterns are strongly influenced by the injection timing, duration, intake pressure, and coolant temperature. For combinations of high in-cylinder gas density and long injection duration, merging of the individual spray plumes, commonly referred to as spray collapse, can cause a dramatic change to the shape and thickness of the wall fuel films. Overall, the study provides guidance to engine designers aiming at minimizing wall wetting through tailored combinations of injection timings and durations.


2019 ◽  
Vol 21 (4) ◽  
pp. 664-682
Author(s):  
Martin Theile ◽  
Martin Reißig ◽  
Egon Hassel ◽  
Dominique Thévenin ◽  
Martin Hofer ◽  
...  

This work summarizes the numerical analysis of the effect of early fuel injection on the charge motion in a direct injection spark ignition engine concerning cyclic fluctuations of the flow field. The combination of the scale-resolving turbulence model “Scale Adaptive Simulation” and post-processing routines for vortex trajectory visualization allows for a detailed insight into the temporal resolved and cycle-dependent behavior of the charge motion. In the first part, a simplified engine set-up is presented and used as a validation case to ensure correct behavior of the turbulence model and post-processing routines. In the second part, the computational fluid dynamics model of the real engine is introduced. The application of the proposed vortex tracking algorithm is shown, and a short discussion about the transient behavior of the charge motion in this engine set-up is given. The third part describes the analysis of the influence of the fuel injection on the charge motion at different engine speeds from 1000 to 3000 r/min and variations of the intake pressure from 1 to 2 bar. Finally, the impact on different flow field properties at possible ignition timings is discussed. Changes in mean flow field quantities as well as in aerodynamic fluctuations are found as a consequence of fuel injection.


2016 ◽  
Vol 18 (5-6) ◽  
pp. 490-504 ◽  
Author(s):  
Simona Silvia Merola ◽  
Adrian Irimescu ◽  
Luca Marchitto ◽  
Cinzia Tornatore ◽  
Gerardo Valentino

Sign in / Sign up

Export Citation Format

Share Document