charge motion
Recently Published Documents


TOTAL DOCUMENTS

202
(FIVE YEARS 32)

H-INDEX

23
(FIVE YEARS 2)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
D. Mayer ◽  
F. Lever ◽  
D. Picconi ◽  
J. Metje ◽  
S. Alisauskas ◽  
...  

AbstractThe conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220–250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.


Author(s):  
A.N. Korshunova ◽  
V.D. Lakhno

Various regimes of a charge motion along a chain in a constant electric field are investigated. This motion is simulated on the basis of the Holstein model. Earlier studies demonstrate a possibility of a uniform motion of a charge in a constant electric field over very long distances. For small values of the electric field intensity a Holstein polaron can move at a constant velocity. As the electric field intensity increases, a charge motion acquires oscillatorily character, performing Bloch oscillations. Since the charge motion depends on the whole set of the system parameters the character of the motion depends not only on the value of the electric field intensity. Therefore, the electric field intensity for which the uniform motion takes place differs for chains with different parameters. The character of the charge motion and distribution is considered in chains with different values of the constant of coupling between the charge and the displacements of the chain. We showed that the values of the electric field intensity for which the regime of a charge motion changes are different in chains with different values of the coupling constant. We also demonstrated that for one and the same value of the electric field intensity, in chains with different values of the coupling constant either a uniform motion or an oscillatory motion, or a stationary polaron can be observed.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Michael F Priest ◽  
Elizabeth EL Lee ◽  
Francisco Bezanilla

Positively-charged amino acids respond to membrane potential changes to drive voltage sensor movement in voltage-gated ion channels, but determining the displacements of voltage sensor gating charges has proven difficult. We optically tracked the movement of the two most extracellular charged residues (R1, R2) in the Shaker potassium channel voltage sensor using a fluorescent positively-charged bimane derivative (qBBr) that is strongly quenched by tryptophan. By individually mutating residues to tryptophan within the putative pathway of gating charges, we observed that the charge motion during activation is a rotation and a tilted translation that differs between R1 and R2. Tryptophan-induced quenching of qBBr also indicates that a crucial residue of the hydrophobic plug is linked to the Cole-Moore shift through its interaction with R1. Finally, we show that this approach extends to additional voltage-sensing membrane proteins using the Ciona intestinalis voltage sensitive phosphatase (CiVSP) (Murata et al., 2005a).


2021 ◽  
Author(s):  
Amandeep Singh ◽  
Sanjay Poonia ◽  
Jaspreet Singh ◽  
Akhil Sharma ◽  
Narinder Kumar ◽  
...  

2021 ◽  
pp. 146808742110394
Author(s):  
Andrea Pati ◽  
Davide Paredi ◽  
Cooper Welch ◽  
Marius Schmidt ◽  
Christopher Geschwindner ◽  
...  

In this work, the Engine Combustion Network Spray G injector was mounted in the Darmstadt optical-accessible engine to study phenomena typical of multi-hole, early direct-injection events in spark-ignition engines characterized by tumble flow charge motion. Dedicated experimental measurements of both in-cylinder spray morphology and flow velocities before and after the injection process were carried out to assess the adopted numerical setup under real engine conditions. A dynamic secondary breakup model from the literature was coupled with an atomization multi-motion regime model. The model was validated against state-of-the-art ECN Spray G experiments for a constant-volume chamber under low evaporating condition. Then, the simulation of the spray injection in the engine was carried out and the achieved results were compared against the experimental data. Overall, good agreement between experiments and simulations was observed for the spray morphology and velocity fields in both cases. With reference to engine calculations the intake flow was seen to induce spray asymmetry. A partial vortex generated during the intake phase on the tumble plane interacts with the spray, developing into a full vortex which induces an upward flow that stabilizes the spray. The upward flows below the intake valve increase the dilution of the plume outside the tumble plane, which therefore exhibits reduced penetration. Moreover, the intake valves protect from the energetic intake flow the recirculation vortex generated at the tip of the plumes that lie outside the tumble plane. The intake flow helps fuse the vapor fuel clouds of the individual plumes near the injector tip, obtaining a vapor fuel with a shape like that generated by a horseshoe multi-hole injector. Finally, a phenomenological model of the interaction between the multi-hole injector jets and the engine intake flow was introduced to describe the spray evolution in a typical DISI engine.


Sign in / Sign up

Export Citation Format

Share Document