Use of Computational Fluid Dynamics for the Design of Formula SAE Race Car Aerodynamics

Author(s):  
Punith Doddegowda ◽  
Aleksandr L. Bychkovsky ◽  
Albert R. George
2017 ◽  
Vol 18 (2) ◽  
pp. 212-224
Author(s):  
Muhammad Abid ◽  
Hafiz Abdul Wajid ◽  
Muhammad Zohair Iqbal ◽  
Shayan Najam ◽  
Ali Arshad ◽  
...  

This paper presents design of aerodynamic downforce generating devices (front wing, rear wing and diffuser) to enhance the performance of the Formula Student Race Car using numerical and experimental studies. Numerical results using computational fluid dynamics (CFD) studies were primarily validated with the experimental results performed in the wind tunnel. It was concluded that the use of a downforce package can enhance the performance of the vehicle in the competition.


2013 ◽  
Vol 275-277 ◽  
pp. 665-671
Author(s):  
Aldo Pugliese ◽  
Zhi Gang Yang ◽  
Qi Liang Li

In order to analyze the influence of the rear wing of a competition race car on the aerodynamics of the whole vehicle, computational fluid dynamics simulations have been performed. Rear wing is set by two elements, a main plate and a flap. Their relative position and the angle of attack of these elements influence the aero- performances in terms of downforce and drag generated; 12 different configurations have been generated, modifying the angle of attack and the slot gap. 3D mesh has been generated from the geometrical model of the vehicle, and air flow around the vehicle and on the rear wing has been evaluated through a CFD commercial software. It has been proved that steeper angles of attack of the mainplate and of the flap contribute to generate more downforce until a certain point; when angle of attack reaches a critical value, the downforce no longer increases and the drag still keep high values.


Sign in / Sign up

Export Citation Format

Share Document