front wing
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 17)

H-INDEX

4
(FIVE YEARS 1)

2022 ◽  
Vol 221 ◽  
pp. 104832
Author(s):  
Filipe F. Buscariolo ◽  
Julien Hoessler ◽  
David Moxey ◽  
Ayad Jassim ◽  
Kevin Gouder ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7907
Author(s):  
Maciej Szudarek ◽  
Janusz Piechna

In time attack races, aerodynamics plays a vital role in achieving short track times. These races are characterized by frequent braking and acceleration supported by aerodynamic downforce. Usually, typical cars are modified for these races by amateurs. Adjusting the aerodynamic solutions to work with bodies developed for other flow conditions is difficult. This paper presents the results of a numerical analysis of the effects of installing a straight wing in front of or above the body on the modified vehicle system’s aerodynamic characteristics, particularly on the front wheels’ aerodynamic downforce values. The paper presents the methodology and results of calculations of the aerodynamic characteristics of a car with an additional wing placed in various positions in relation to the body. The numerical results are presented (Cd, Cl, Cm, Clf, Clr), as well as exemplary pressure distributions, pathlines, and visualizations of vortex structures. Strong interactions between the wing operation and body streamline structure are shown. An interesting and unexpected result of the analysis is that the possibility of obtaining aerodynamic downforce of the front wheels is identified, without an increase in aerodynamic drag, by means of a wing placed in a proper position in front of the body. A successful attempt to balance the additional downforce coming from the front wing on the front axle is made using a larger spoiler. However, for large angles of attack, periodically unsteady flow is captured with frequency oscillations of ca. 6–12 Hz at a car speed of 40 m/s, which may interfere with the sports car’s natural suspension frequency.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4421
Author(s):  
Daniel Martins ◽  
João Correia ◽  
André Silva

The present study focuses on investigating the aerodynamic interaction between a three-element wing and wheel in ground effect, following the Formula One regulation change set for 2022, among which is the simplification of the front wing. This was accomplished by conducting a three-dimensional computational fluid dynamics analysis, using a Detached-Eddy Simulation approach, on a simplified one-quarter model of a Formula One racing car. The main goal was to examine how changing the front wing pressure distribution, by changing the incidence of the second flap, affected the wheel wake. The flow investigation indicated that the wheel wake is influenced by the flap configuration, which is mainly due to the fact that different flap configurations produce different upwash flow fields, leading to a variation of the separation point on top of the tire. As the separation point moves rearwards, the downwash generated in the central region (for a vertical plane) of the wheel wake increases incrementally, leading to a resultant wake that is shorter and further apart. The force investigation showed that the proximity between the region of instability (i.e., vortex breakdown) and the wing’s trailing edge influences the behavior of the transient oscillations, regarding the forces acting on the wing: detecting higher drag force fluctuations, when compared to downforce fluctuations.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2059
Author(s):  
Mattia Basso ◽  
Carlo Cravero ◽  
Davide Marsano

The design of a racing car needs several aerodynamic design steps in order to achieve high performance. Each component has an aerodynamic interaction with the others and high performance requires a good match between them. The front wing is undoubtedly one of the main components to determine car performance with a strong interaction with the downstream components. The Gurney Flap (GF) is a small appendix perpendicular to the pressure side of the front wing at the trailing edge that can dramatically improve the front wing performance. In the literature, the performance of a GF on a single profile is well documented, while in this paper the GF mounted on the front wing of a racing car has been investigated and the interactions through the 3D flow structures are discussed. The global drag and downforce performance on the main components of the vehicle have been examined by comparing the cases with and without a GF. The GF increases the downforce by about 24% compared to a limited increase in the drag force. A fluid dynamic analysis has been carried out to understand the physical mechanisms of the flow interaction induced to the other components. The GF, in fact, enhances the ground effect, by redistributing the flow that interacts differently with the other components i.e., the wheel zone.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 247
Author(s):  
Benjamin Arrondeau ◽  
Zeeshan A. Rana

The humpback whale flipper tubercles have been shown to improve the aerodynamic coefficients of a wing, especially in stall conditions, where the flow is almost fully detached. In this work, these tubercles were implemented on a F1 front-wing geometry, very close to a Tyrrell wing. Numerical simulations were carried out employing the k−ω SST turbulence model and the overall effects of the tubercles on the flow behavior were analyzed. The optimal amplitude and number of tubercles was determined in this study for this front wing where an improvement of 22.6% and 9.4% is achieved, respectively, on the lift and the L/D ratio. On the main element, the stall was delayed by 167.7%. On the flap, the flow is either fully detached, in the large circulation zone, or fully attached. Overall, in stall conditions, tubercles improve the downforce generation but at the cost of increased drag. Furthermore, as the tubercles are case-dependent, an optimal configuration for tubercles implementation also exists for any geometry.


Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 237 ◽  
Author(s):  
Xabier Castro ◽  
Zeeshan A. Rana

The aerodynamic loads generated in a wing are critical in its structural design. When multi-element wings with wingtip devices are selected, it is essential to identify and to quantify their structural behaviour to avoid undesirable deformations which degrade the aerodynamic performance. This research investigates these questions using numerical methods (Computational Fluid Dynamics and Finite Elements Analysis), employing exhaustive validation methods to ensure the accuracy of the results and to assess their uncertainty. Firstly, a thorough investigation of four baseline configurations is carried out, employing Reynolds Averaged Navier–Stokes equations and the k-ω SST (Shear Stress Transport) turbulence model to analyse and quantify the most important aerodynamic and structural parameters. Several structural configurations are analysed, including different materials (metal alloys and two designed fibre-reinforced composites). A 2022 front wing is designed based on a bidimensional three-element wing adapted to the 2022 FIA Formula One regulations and its structural components are selected based on a sensitivity analysis of the previous results. The outcome is a high-rigidity-weight wing which satisfies the technical regulations and lies under the maximum deformation established before the analysis. Additionally, the superposition principle is proven to be an excellent method to carry out high-performance structural designs.


Author(s):  
Michel Touw ◽  
Jacob Lotz ◽  
Ido Akkerman

In this paper we investigate the efficacy of augmenting, or replacing, an active height control system for a submerged hydrofoil with a passive system based on springs and dampers. A state-space model for submerged hydrofoils is formulated and extended to allow for a suspension at the front wing, aft wing or both wings. The model is partially verified by obtaining results in the fixed-wing limit and comparing these with experimental data from the MARIN Foiling Future Demonstrator. In the current study we limit ourselves to translational springs, only allowing suspension motion in the heave direction. This results in unfavorable behavior: either the motions increased or the system becomes unstable. It is therefore recommended for future research to try rotational springs.


2020 ◽  
Vol 37 (3) ◽  
pp. 8-25
Author(s):  
A.M.F. Al-Arabe ◽  
◽  
E.V. Markova ◽  
T.V. Denisova ◽  
◽  
...  

This article is to optimize the assembly of the front wing spar of a transport aircraft. Particular attention is paid to reducing the complexity, assembly cycle and other parameters that determine the efficiency of the process. According to experts, the domestic civil aviation fleet today is characterized as obsolete both morally and physically. The most important advantage of new products is the increased resource provided by the use of new materials, new design and technological solutions. One of such solutions is the widespread use of bent profiles from promising aluminum sheet materials. The presence of a cladding layer, a more uniform structure provides an increased resource. An important part of the production process of an aircraft manufacturing enterprise is assembly work, which largely determines the quality of the product. The main ways to increase the efficiency of assembly work, preparation of production, reduce costs is to increase the manufacturability of products, the creation of new means of production, the wider use of mechanization and automation, as well as the selection of optimal technological processes and means of equipping assembly work in technological design.


Sign in / Sign up

Export Citation Format

Share Document