Waste Heat Recovery Concept to Reduce Fuel Consumption and Heat Rejection from a Diesel Engine

2010 ◽  
Vol 3 (1) ◽  
pp. 60-68 ◽  
Author(s):  
Ho Teng
2021 ◽  
Vol 7 ◽  
Author(s):  
Juan Carlos Soldado ◽  
Apostolos Pesyridis ◽  
Panos Sphicas ◽  
Pantelis Nikolakopoulos ◽  
Christos N. Markides ◽  
...  

Despite the high thermal efficiency achieved by modern heavy-duty diesel engines, over 40% of the energy contained in the fuel is wasted as heat either in the cooling or the exhaust gases. By recovering part of the wasted energy, the overall thermal efficiency of the engine increases and the pollutant emissions are reduced. Organic Rankine cycle (ORC) systems are considered a favourable candidate technology to recover exhaust gas waste heat, because of their simplicity and small backpressure impact on the engine performance and fuel consumption. The recovered energy can be transformed into electricity or directly into mechanical power. In this study, an axial turbine expander for an ORC system was designed and optimized for a heavy-duty diesel engine for which real-world data were available. The impact of the ORC system on the fuel consumption under various operating points was investigated. Compared to an ORC system equipped with a radial turbine expander, the axial design improved fuel consumption by between 2 and 10% at low and high engine speeds. Finally, the benefits of utilising ORC systems for waste heat recovery in heavy-duty trucks is evaluated by performing various drive cycle tests, and it is found that the highest values of fuel consumption were found in the NEDC and the HDUDDS as these cycles generally involve more dynamic driving profiles. However, it was in these cycles that the ORC could recover more energy with an overall fuel consumption reduction of 5 and 4.8%, respectively.


2021 ◽  
Vol 234 ◽  
pp. 113947
Author(s):  
Alexandre Persuhn Morawski ◽  
Leonardo Rodrigues de Araújo ◽  
Manuel Salazar Schiaffino ◽  
Renan Cristofori de Oliveira ◽  
André Chun ◽  
...  

2015 ◽  
Vol 8 (2) ◽  
pp. 209-226 ◽  
Author(s):  
Takuya Yamaguchi ◽  
Yuzo Aoyagi ◽  
Noboru Uchida ◽  
Akira Fukunaga ◽  
Masayuki Kobayashi ◽  
...  

2017 ◽  
Vol 142 ◽  
pp. 1238-1243 ◽  
Author(s):  
Xiaoya Li ◽  
Gequn Shu ◽  
Hua Tian ◽  
Lingfeng Shi ◽  
Daiqiang Li ◽  
...  

Author(s):  
Salman Abdu ◽  
Song Zhou ◽  
Malachy Orji

Highly increased fuel prices and the need for greenhouse emissions reduction from diesel engines used in marine engines in compliance with International Maritime Organization (IMO) on the strict regulations and guidelines for the Energy Efficiency Design Index (EEDI) make diesel engine exhaust gas heat recovery technologies attractive. The recovery and utilization of waste heat not only conserves fuel, but also reduces the amount of waste heat and greenhouse gases dumped to the environment .The present paper deals with the use of exergy as an efficient tool to measure the quantity and quality of energy extracted from waste heat exhaust gases in a marine diesel engine. This analysis is utilized to identify the sources of losses in useful energy within the components of the system for three different configurations of waste heat recovery system considered. The second law efficiency and the exergy destroyed of the components are investigated to show the performance of the system in order to select the most efficient waste heat recovery system. The effects of ambient temperature are also investigated in order to see how the system performance changes with the change of ambient temperature. The results of the analysis show that in all of the three different cases the boiler is the main source of exergy destruction and the site of dominant irreversibility in the whole system it accounts alone for (31-52%) of losses in the system followed by steam turbine and gas turbine each accounting for 13.5-27.5% and 5.5-15% respectively. Case 1 waste heat recovery system has the highest exergetic efficiency and case 3 has the least exergetic efficiency.


2019 ◽  
Vol 27 (1) ◽  
pp. 282-295 ◽  
Author(s):  
Adamu Yebi ◽  
Bin Xu ◽  
Xiaobing Liu ◽  
John Shutty ◽  
Paul Anschel ◽  
...  

2017 ◽  
Author(s):  
Apostolos Karvountzis-Kontakiotis ◽  
Apostolos Pesiridis ◽  
Hua Zhao ◽  
Fuhaid Alshammari ◽  
Benjamin Franchetti ◽  
...  

2018 ◽  
Vol 173 ◽  
pp. 613-625 ◽  
Author(s):  
Hamed Habibi ◽  
Mohammad Zoghi ◽  
Ata Chitsaz ◽  
Koroush Javaherdeh ◽  
Mojtaba Ayazpour

Sign in / Sign up

Export Citation Format

Share Document