An Active Control System for Improving the Sound Quality of Vehicle Interior Noise

2015 ◽  
Vol 8 (3) ◽  
pp. 897-903 ◽  
Author(s):  
Yong Xu
Actuators ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 52 ◽  
Author(s):  
Gunnar Gäbel ◽  
Jonathan Millitzer ◽  
Heiko Atzrodt ◽  
Sven Herold ◽  
Andreas Mohr

An optimized driving comfort with a low interior noise level is an important intention in the passenger car development process. The interior noise level caused by the dynamic interaction between the rolling tyre and the rough road surface and transmitted via the car-body is a significant component of the entire noise level. To reduce the road induced interior noise, in general, the chassis system has to be optimized. Passive measures often induces a trade-off between vehicle dynamics and driving comfort. To overcome this disadvantage in this paper, the development and realization of an active measure is proposed. For the purpose of active mechanical decoupling, an active control system is developed, the feasibility of the integration is investigated and its noise reduction potential is identified by vehicle tests. In a first step, a classical multi-channel and experimental-based structure-borne transfer path analysis of the full vehicle is realized to determine the dominant transfer paths. The concept for the active mount system (active mounts, multi-channel control system, sensors) is developed and parametrized by system level simulation. Mechanical components and power electronics of the active system are designed, manufactured and tested in the laboratory. Subsequently, the entire active system is integrated into the vehicle. The broadband adaptive feedforward algorithm is extended by certain measures in order to improve robustness and performance. Full vehicle tests are used to quantify the required specifications and the achieved effectiveness of the active vibration control system.


Author(s):  
Gangping Tan ◽  
Gang Jie ◽  
Ming Cao

An optimization strategy of sound quality was proposed to improve sound quality inside a vehicle. The frequency of vehicle interior noise was divided into sub-bands by equivalent rectangular bandwidth (ERB) in the frequency domain, and the intensity of sub-band noise located in the mid-low frequency can be modified by using the measure of active noise control (ANC) in order to analyze its influence on the sound quality of original noise. Orthogonal experiments of vehicle interior noise were conducted according to experimental design. A model of sound quality objective evaluation (SQOE) was proposed as an experimental index. The role of sub-band on the model of SQOE was analyzed at different speeds so as to achieve the optimum level, optimum combination of sound quality and main factors. The results, obtained by implementing the optimization strategy of sound quality, were verified by means of tests. By validation, it showed that optimum sound quality can be achieved by changing the intensity of sub-band noise.


Sign in / Sign up

Export Citation Format

Share Document