scholarly journals Improving Cold Start and Transient Performance of Automotive Diesel Engine at Low Ambient Temperatures

Author(s):  
Arumugam Sakunthalai Ramadhas ◽  
Hongming Xu
2017 ◽  
Vol 16 (12) ◽  
pp. 3330-3337 ◽  
Author(s):  
Arumugam Sakunthalai Ramadhas ◽  
Hongming Xu ◽  
Dai Liu ◽  
Jianyi Tian

2021 ◽  
pp. 146808742110395
Author(s):  
José Galindo ◽  
Vicente Dolz ◽  
Javier Monsalve-Serrano ◽  
Miguel Angel Bernal Maldonado ◽  
Laurent Odillard

The aftertreatment systems used in internal combustion engines need high temperatures for reaching its maximum efficiency. By this reason, during the engine cold start period or engine restart operation, excessive pollutant emissions levels are emitted to the atmosphere. This paper evaluates the impact of using a new cylinder deactivation strategy on a Euro 6 turbocharged diesel engine running under cold conditions (−7°C) with the aim of improving the engine warm-up process. This strategy is evaluated in two parts. First, an experimental study is performed at 20°C to analyze the effect of the cylinder deactivation strategy at steady-state and during an engine cold start at 1500 rpm and constant load. In particular, the pumping losses, pollutant emissions levels and engine thermal efficiency are analyzed. In the second part, the engine behavior is analyzed at steady-state and transient conditions under very low ambient temperatures (−7°C). In these conditions, the results show an increase of the exhaust temperatures of around 100°C, which allows to reduce the diesel oxidation catalyst light-off by 250 s besides of reducing the engine warm-up process in approximately 120 s. This allows to reduce the CO and HC emissions by 70% and 50%, respectively, at the end of the test.


2000 ◽  
Vol 123 (1) ◽  
pp. 117-124 ◽  
Author(s):  
H.-Q. Liu ◽  
N. G. Chalhoub ◽  
N. Henein

A nonlinear dynamic model is developed in this study to simulate the overall performance of a naturally aspirated, single cylinder, four-stroke, direct injection diesel engine under cold start and fully warmed-up conditions. The model considers the filling and emptying processes of the cylinder, blowby, intake, and exhaust manifolds. A single zone combustion model is implemented and the heat transfer in the cylinder, intake, and exhaust manifolds are accounted for. Moreover, the derivations include the dynamics of the crank-slider mechanism and employ an empirical model to estimate the instantaneous frictional losses in different engine components. The formulation is coded in modular form whereby each module, which represents a single process in the engine, is introduced as a single block in an overall Simulink engine model. The numerical accuracy of the Simulink model is verified by comparing its results to those generated by integrating the engine formulation using IMSL stiff integration routines. The engine model is validated by the close match between the predicted and measured cylinder gas pressure and engine instantaneous speed under motoring, steady-state, and transient cold start operating conditions.


2021 ◽  
pp. 1-11
Author(s):  
Dominik Appel ◽  
Fabian P. Hagen ◽  
Uwe Wagner ◽  
Thomas Koch ◽  
Henning Bockhorn ◽  
...  

Abstract To comply with future emission regulations for internal combustion engines, system-related cold-start conditions in short-distance traffic constitute a particular challenge. Under these conditions, pollutant emissions are seriously increased due to internal engine effects and unfavorable operating conditions of the exhaust aftertreatment systems. As a secondary effect, the composition of the exhaust gases has a considerable influence on the deposition of aerosols via different deposition mechanisms and on fouling processes of exhaust gas-carrying components. Also, the performance of exhaust gas aftertreatment systems may be affected disadvantageously. In this study, the exhaust gas and deposit composition of a turbocharged three-cylinder gasoline engine is examined in-situ upstream of the catalytic converter at ambient and engine starting temperatures of -22 °C to 23 °C using a Fourier-transform infrared spectrometer and a particle spectrometer. For the cold start investigation, a modern gasoline engine with series engine periphery is used. In particular, the investigation of the behavior of deposits in the exhaust system of gasoline engines during cold start under dynamic driving conditions represents an extraordinary challenge due to an average lower soot concentration in the exhaust gas compared to diesel engines and so far, has not been examined in this form. A novel sampling method allows ex-situ analysis of formed deposits during a single driving cycle. Both, particle number concentration and the deposition rate are higher in the testing procedure of Real Driving Emissions (RDE) than in the inner-city part of the Worldwide harmonized Light vehicles Test Cycle (WLTC). In addition, reduced ambient temperatures increase the amount of deposits, which consist predominantly of soot and to a minor fraction of volatile compounds. Although the primary particle size distributions of the deposited soot particles do not change when boundary conditions change, the degree of graphitization within the particles increases with increasing exhaust gas temperature.


Sign in / Sign up

Export Citation Format

Share Document