Understanding HCCI Combustion in a Free Piston Engine with a Multi-Zone, Control-Mass Model with Thermal Stratification and Chemical Kinetics

Author(s):  
Yingcong Zhou ◽  
Brian Gainey ◽  
Deivanayagam Hariharan ◽  
Benjamin Lawler ◽  
Sotirios Mamalis
Author(s):  
Chen Zhang ◽  
Zongxuan Sun

Previously, the authors have proposed the concept of piston trajectory-based combustion control enabled by a free piston engine (FPE) and shown its advantages on both thermal efficiency and emissions performance. The main idea of this control method is to design and implement an optimal piston trajectory into FPE and optimizes the combustion performance accordingly. To realize the combustion control in practice, it is obvious that the design of the optimal trajectory should consider the dynamic behaviors of the FPE’s actuation systems as well as variable load dynamics and fuels’ chemical kinetics. In this paper, a comprehensive model describing the operation of a hydraulic FPE fueled by diesel under HCCI combustion mode is developed. Such a high fidelity model includes four parts, i.e. the piston dynamics, the hydraulic dynamics, the thermodynamics and the fuel’s chemical kinetics. Extensive simulation results are produced, showing that by varying the switching strategy of a fast-response digital valve, the hydraulic FPE can operate at different working loads in a stable manner. Additionally, analysis has been conducted to quantify the thermal efficiency as well as the frictional loss and throttling loss of the FPE. At last, a feedback control is developed to generate optimal switching strategies for the digital valve aimed to achieve the HCCI combustion phasing control. The resulted switching strategy of the digital valve not only increases the thermal efficiency by 0.76%, but also reduces frictional loss by 9.8%, throttling loss by 6.5% as well as NOx emission by 85.6%, which clearly demonstrates the effectiveness of the trajectory-based combustion control.


2008 ◽  
Vol 1 (1) ◽  
pp. 1118-1143 ◽  
Author(s):  
Miriam Bergman ◽  
Jakob Fredriksson ◽  
Valeri I. Golovitchev

2011 ◽  
Vol 88 (11) ◽  
pp. 3712-3725 ◽  
Author(s):  
Shuaiqing Xu ◽  
Yang Wang ◽  
Tao Zhu ◽  
Tao Xu ◽  
Chengjun Tao

2021 ◽  
Vol 25 (6 Part A) ◽  
pp. 4197-4207
Author(s):  
Chunhui Liu ◽  
Shaojie Wu ◽  
Shuo Pang

A coupled 3-D CFD and detailed chemical kinetics model of free-piston engine generator (FPEG) was adopted to investigate the effects of initial parameters on homogeneous charge compression ignition (HCCI) combustion and emission. Biodiesel with 115 species skeletal mechanism was selected as fuel. Five different parameters, namely the initial pressure, the initial temperature, the working frequency, the compression ratio and the fuel equivalence ratio, were selected to analyze their influences in the HCCI combustion simulation of FPEG. The simulation results showed that the change of the five parameters had visible impact on the heat release rate of HCCI combustion, which caused the in-cylinder temperature and pressure to change, and also caused the emission content of NOx and SOOT to change obviously.


Author(s):  
Chen Zhang ◽  
Zongxuan Sun

Previously, the authors have proposed a novel combustion control enabled by the free piston engine (FPE), e.g. the piston trajectory-based HCCI combustion control. Extensive simulation results show that, by employing specific piston trajectories, the FPE is able to increase the engine thermal efficiency significantly, and reduces the emissions production simultaneously. However, a systematic approach to designing the optimal piston trajectory, according to variable working conditions and versatile fuel properties, still remains elusive. In this paper, the study of this optimization is presented. First, a control-oriented model, which includes thermodynamics of the in-cylinder gas and chemical kinetics of the utilized fuel, is adapted for the optimization study. The unique phase separation method was also implemented into the presented model to sustain sufficient chemical kinetics information and reduce the computational burden at the same time. Two optimization methods are then proposed in this paper: one is converting the original problem to parameters optimization; the other is transforming it to a constrained nonlinear programming and solving it via the sequential quadratic programming (SQP) method. The corresponding optimization results and detailed discussions are followed, which clearly demonstrate the advantage of the trajectory-based HCCI combustion with regard to FPE output work and NOx emission.


2012 ◽  
Vol 602-604 ◽  
pp. 1090-1094
Author(s):  
Xiao Long Li ◽  
Yang Wang ◽  
Tao Xu ◽  
Fei Yu Song ◽  
Ya Jun He ◽  
...  

In order to investigate the performance of hydraulic free piston engine (HFPE) fueled with dimethyl-ether (DME) under homogeneous charge compression ignition (HCCI) combustion, one-dimensional and three-dimensional simulation models are established by AMESIM and FIRE respectively. The simulation results show that the piston’s velocity and the displacement are dissymmetric about top dead center (TDC). The residence time of piston around TDC is quite short. DME chemical reaction kinetic mechanism is applied to three-dimensional computational fluid dynamics (CFD) model. Under equivalence ratio of 0.4, boost ratio of 1.33 and EGR ratio of 0.4, three heat release peaks appears. Oxidation of CO which contributes 38% of total energy is considered as the main reason of the third heat release peak.


Sign in / Sign up

Export Citation Format

Share Document