Tribological interferences on the cylinder head union associated with the seal and its effects on the bolted joint tightening process

2021 ◽  
Author(s):  
Igor Gonzaga Porto ◽  
Tiago Cousseau
Author(s):  
Soichi Hareyama ◽  
Ken-ichi Manabe

The calibrated wrench method is often used for tightening. When tightening bolted joints, it is important to apply high initial axial tension. However, since the axial tension is indirectly applied in this method, it varies and is widely distributed in the case of tightening carried out in the production line of a factory, for example. However, the calibrated wrench method is still widely used because of the simple tool used and easy standardization. Conventionally, this type of distribution has been considered to lie within a rhombus. In our previous paper, we analyzed and discussed the case when the distribution of the tightening torque and the equivalent stress of the bolted joint are considered to be independent random variables; in this case, the distribution becomes elliptical. Using this feature, a higher target tightening torque can be set than before. Finally, we established a procedure for the analysis and calculation of the optimum tightening torque for bolted joints. To ensure sufficient long-term tightening reliability to prevent breakage and loosening, a high initial axial tension and high equivalent stress can be realized using this proposed method. In this study, we analyze and discuss the case of differences in the tightening work condition (process control capability) and the tightening design condition. The tightening work coefficient a depends on the management state, the tightening working posture, and the process control capability of a tool or shop floor at a production site. According to the results of our trial calculation in Appendix A, the improvement ratio of the proposed target tightening torque is approximately 8.3% compared with the conventional method for dry friction and approximately 7.5% in the case of oily friction. Furthermore, in bolted joint tightening design, the tightening conditions under which the design conditions are satisfied are derived analytically. For the tightening design conditions of (1) a minimum axial stress of at least 50% at the yield point, and (2) an equivalent stress of 70% to 90% at the yield point, both the conventional and proposed areas of the confidence limit are obtained by precise analysis. Although the permitted limit of the tightening design condition cannot be realized by the conventional method, it can be realized by the proposed elliptical confidence limit method. Finally, we establish a method for maintaining the tightening reliability that involves applying high axial tension by increasing the target design tightening torque using the elliptical confidence limit.


2005 ◽  
Vol 40 (4) ◽  
pp. 541-547
Author(s):  
Toshimichi FUKUOKA

2020 ◽  
Vol 183 ◽  
pp. 104102
Author(s):  
Raul de Sousa Fernandes ◽  
Roberto Bortolussi ◽  
Sergio Delijaicov ◽  
Jeferson Ferreira

Author(s):  
Abhijeet Vithal Marathe ◽  
Neelkanth V. Marathe ◽  
G. Venkatachalam

Cylinder Head Gasketed joint is one of the important joint for internal combustion engines. The main function of cylinder Head Gasketed joint is to seal combustion gases, oil and coolant and avoid entering the air into combustion chamber. Preload is applied on cylinder head bolt to avoid the leakages. Excessive preload on cylinder head bolt will cause extra stresses and cylinder bore deformation also increased which reduces the engine performance. Hence, it is very essential to determine adequate and accurate preload on cylinder head bolts. There are different types of bolt tightening methods followed by engine manufacturers as compared to other methods loss of preload and preload variation is less in angle torque method. In this work, Angle torque method for cylinder head bolted joint classical mathematical model is developed to estimate the snug torque and angle torque. Model is validated with FE analysis and experimental work. High performance 3-cylinder diesel engine's cylinder head, cylinder head bolts and crankcase are taken for methodology development, FE and experimental work.


2020 ◽  
Vol 14 (3) ◽  
pp. 7141-7151 ◽  
Author(s):  
R. Omar ◽  
M. N. Abdul Rani ◽  
M. A. Yunus

Efficient and accurate finite element (FE) modelling of bolted joints is essential for increasing confidence in the investigation of structural vibrations. However, modelling of bolted joints for the investigation is often found to be very challenging. This paper proposes an appropriate FE representation of bolted joints for the prediction of the dynamic behaviour of a bolted joint structure. Two different FE models of the bolted joint structure with two different FE element connectors, which are CBEAM and CBUSH, representing the bolted joints are developed. Modal updating is used to correlate the two FE models with the experimental model. The dynamic behaviour of the two FE models is compared with experimental modal analysis to evaluate and determine the most appropriate FE model of the bolted joint structure. The comparison reveals that the CBUSH element connectors based FE model has a greater capability in representing the bolted joints with 86 percent accuracy and greater efficiency in updating the model parameters. The proposed modelling technique will be useful in the modelling of a complex structure with a large number of bolted joints.


Sign in / Sign up

Export Citation Format

Share Document