Measurement of Sound Power Due to Flow Noise at the Outlet of a Straight Pipe

2021 ◽  
Author(s):  
Seth M. Donkin ◽  
D. W. Herrin
Keyword(s):  
2020 ◽  
Vol 22 (2) ◽  
pp. 541-552
Author(s):  
Patryk Gaj ◽  
Joanna Kopania

AbstractAcoustic emission through duct walls is an important problem in engineering acoustics. This phenomenon most commonly occurs in heating, ventilating and air-conditioning (HVAC) and other gas flow ducting (large industrial silencers). Many works focus on elaboration of more exact description of the acoustic field phenomena reflecting the real conditions in which these appliances operate. As a standard, circle or rectangular ducts are used in ventilation systems. However, technical conditions during the installation of the HVAC system, due to the limitation of the assembly space, require often the use of channels with other geometries. This paper presents aeroacoustical parameters of three most common cross-sectional shapes of air-moving ductwork. The rectangular, square with roundedcorners and circular ducts were studied. The “natural” duct attenuation, which is a consequence of duct shape or noise breakout and involves a diminution of the internally propagated sound power was observed. Natural duct attenuation can be a useful way of reducing sound power levels in long runs of duct.


1998 ◽  
Author(s):  
Mark Hyman ◽  
Iskender Sahin ◽  
Thai Nguyen
Keyword(s):  

2019 ◽  
Vol 67 (5) ◽  
pp. 350-362
Author(s):  
J. M. Ku ◽  
W. B. Jeong ◽  
C. Hong

The low-frequency noise generated by the vibration of the compressor in the machinery room of refrigerators is considered as annoying sound. Active noise control is used to reduce this noise without any change in the design of the compressor in the machinery room. In configuring the control system, various signals are measured and analyzed to select the reference signal that best represents the compressor noise. As the space inside the machinery room is small, the size of a speaker is limited, and the magnitude of the controller transfer function is designed to be small at low frequencies, the controller uses FIR filter structure converged by the FxLMS algorithm using the pre-measured time signal. To manage the convergence speed for each frequency, the frequency-weighting function is applied to FxLMS algorithm. A series of measurements are performed to design the controller and to evaluate the control performance. After the control, the sound power transmitted by the refrigerator is reduced by 9 dB at the first dominant frequency (408 Hz in this case) and 3 dB at the second dominant frequency (459 Hz here), and the overall sound power decreases by 2.6 dB. Through this study, an active control system for the noise generated by refrigerator compressors is established.


Sign in / Sign up

Export Citation Format

Share Document