scholarly journals Influence of Geometry of Channel on the Flow Noise Parameters

2020 ◽  
Vol 22 (2) ◽  
pp. 541-552
Author(s):  
Patryk Gaj ◽  
Joanna Kopania

AbstractAcoustic emission through duct walls is an important problem in engineering acoustics. This phenomenon most commonly occurs in heating, ventilating and air-conditioning (HVAC) and other gas flow ducting (large industrial silencers). Many works focus on elaboration of more exact description of the acoustic field phenomena reflecting the real conditions in which these appliances operate. As a standard, circle or rectangular ducts are used in ventilation systems. However, technical conditions during the installation of the HVAC system, due to the limitation of the assembly space, require often the use of channels with other geometries. This paper presents aeroacoustical parameters of three most common cross-sectional shapes of air-moving ductwork. The rectangular, square with roundedcorners and circular ducts were studied. The “natural” duct attenuation, which is a consequence of duct shape or noise breakout and involves a diminution of the internally propagated sound power was observed. Natural duct attenuation can be a useful way of reducing sound power levels in long runs of duct.

2020 ◽  
Vol 63 (6) ◽  
pp. 2016-2026
Author(s):  
Tamara R. Almeida ◽  
Clayton H. Rocha ◽  
Camila M. Rabelo ◽  
Raquel F. Gomes ◽  
Ivone F. Neves-Lobo ◽  
...  

Purpose The aims of this study were to characterize hearing symptoms, habits, and sound pressure levels (SPLs) of personal audio system (PAS) used by young adults; estimate the risk of developing hearing loss and assess whether instructions given to users led to behavioral changes; and propose recommendations for PAS users. Method A cross-sectional study was performed in 50 subjects with normal hearing. Procedures included questionnaire and measurement of PAS SPLs (real ear and manikin) through the users' own headphones and devices while they listened to four songs. After 1 year, 30 subjects answered questions about their usage habits. For the statistical analysis, one-way analysis of variance, Tukey's post hoc test, Lin and Spearman coefficients, the chi-square test, and logistic regression were used. Results Most subjects listened to music every day, usually in noisy environments. Sixty percent of the subjects reported hearing symptoms after using a PAS. Substantial variability in the equivalent music listening level (Leq) was noted ( M = 84.7 dBA; min = 65.1 dBA, max = 97.5 dBA). A significant difference was found only in the 4-kHz band when comparing the real-ear and manikin techniques. Based on the Leq, 38% of the individuals exceeded the maximum daily time allowance. Comparison of the subjects according to the maximum allowed daily exposure time revealed a higher number of hearing complaints from people with greater exposure. After 1 year, 43% of the subjects reduced their usage time, and 70% reduced the volume. A volume not exceeding 80% was recommended, and at this volume, the maximum usage time should be 160 min. Conclusions The habit of listening to music at high intensities on a daily basis seems to cause hearing symptoms, even in individuals with normal hearing. The real-ear and manikin techniques produced similar results. Providing instructions on this topic combined with measuring PAS SPLs may be an appropriate strategy for raising the awareness of people who are at risk. Supplemental Material https://doi.org/10.23641/asha.12431435


Energies ◽  
2021 ◽  
Vol 14 (2) ◽  
pp. 400 ◽  
Author(s):  
Zelin Nie ◽  
Feng Gao ◽  
Chao-Bo Yan

Reducing the energy consumption of the heating, ventilation, and air conditioning (HVAC) systems while ensuring users’ comfort is of both academic and practical significance. However, the-state-of-the-art of the optimization model of the HVAC system is that either the thermal dynamic model is simplified as a linear model, or the optimization model of the HVAC system is single-timescale, which leads to heavy computation burden. To balance the practicality and the overhead of computation, in this paper, a multi-timescale bilinear model of HVAC systems is proposed. To guarantee the consistency of models in different timescales, the fast timescale model is built first with a bilinear form, and then the slow timescale model is induced from the fast one, specifically, with a bilinear-like form. After a simplified replacement made for the bilinear-like part, this problem can be solved by a convexification method. Extensive numerical experiments have been conducted to validate the effectiveness of this model.


Measurement ◽  
2021 ◽  
pp. 109480
Author(s):  
Ning Zhao ◽  
Chaofan Li ◽  
Huijun Jia ◽  
Fan Wang ◽  
Zhiyue Zhao ◽  
...  

2011 ◽  
Vol 2-3 ◽  
pp. 733-738
Author(s):  
Sheng Yao Gao ◽  
De Shi Wang ◽  
Yi Qun Du

To overcome the non-uniqueness of solution at eigenfrequencies in the boundary integral equation method for structural acoustic radiation, wave superposition method is introduced to study the acoustics characteristics including acoustic field reconstruction and sound power calculation. The numerical method is implemented by using the acoustic field from a series of virtual sources which are collocated near the boundary surface to replace the acoustic field of the radiator, namely the principle of equivalent. How to collocate these equivalent sources is not indicated definitely. Once wave superposition method is applied to sound power calculation, it is necessary to evaluate its accuracy and impact factors. In the paper, the basic principle of wave superposition method is described, and then the integral equation is discretized. Also, the impact factors including element numbers, frequency limitation, and distance between virtual source and integral surface are analyzed in the process of calculate the acoustic radiation from the simply supported thin plate under concentrated force. The extensive measures of acoustic field at the thin plate are compared with results obtain using different numerical methods. The results show that: (a) The agreement between the results from the above numerical methods is excellent. The wave superposition method requires fewer elements and hence is faster. But the extensive numerical modeling suggests that as long as the volume velocity matching yields more than adequate accuracy. (b) The equivalent sources should be collocated inside the radiator. And the accuracy of a given Gauss integration formula will decrease as the source approaches the boundary surface. (c) The numerical method is applicable to the acoustic radiation of structure with complicated shape. (d) The method described in this paper can be used to perform effectively sound power calculation, and its application range can be extended on the basis of these conclusions.


Measurement ◽  
2013 ◽  
Vol 46 (10) ◽  
pp. 3887-3897 ◽  
Author(s):  
Lide Fang ◽  
Yujiao liang ◽  
Qinghua Lu ◽  
Xiaoting Li ◽  
Ran Liu ◽  
...  

Author(s):  
Lei Yu ◽  
William T. Cousins ◽  
Feng Shen ◽  
Georgi Kalitzin ◽  
Vishnu Sishtla ◽  
...  

In this effort, 3D CFD simulations are carried out for real gas flow in a refrigeration centrifugal compressor. Both commercial and the in-house CFD codes are used for steady and unsteady simulations, respectively. The impact on the compressor performance with various volute designs and diffuser modifications are investigated with steady simulations and the analysis is focused on both the diffuser and the volute loss, in addition to the flow distortion at impeller exit. The influence of the tongue, scroll diffusion ratio, diffuser length, and cross sectional area distribution is examined to determine the impact on size and performance. The comparisons of total pressure loss, static pressure recovery, through flow velocity, and the secondary flow patterns for different volute designs show that the performance of the centrifugal compressor depends upon how well the scroll portion of the volute collects the flow from the impeller and achieves the required pressure rise with minimum flow losses in the overall diffusion process. Finally, the best design is selected based on compressor stage pressure rise and peak efficiency improvement. An unsteady simulation of the full wheel compressor stage was carried out to further examine the interaction of impeller, diffuser and the volute. The unsteady flow interactions are shown to have a major impact on the performance of the centrifugal stage.


Author(s):  
Marco Cioffi ◽  
Enrico Puppo ◽  
Andrea Silingardi

In typical heavy duty gas turbines the multistage axial compressor is provided with anti-surge pipelines equipped with on-off valves (blow-off lines), to avoid dangerous flow instabilities during start-ups and shut-downs. Blow-off lines show some very peculiar phenomena and somewhat challenging fluid dynamics, which require a deeper regard. In this paper the blow-off lines in axial gas turbines are analyzed by adopting an adiabatic quasi-unidimensional model of the gas flow through a pipe with a constant cross-sectional area and involving geometrical singularities (Fanno flow). The determination of the Fanno limit, on the basis of the flow equation and the second principle of thermodynamics, shows the existence of a critical pipe length which is a function of the pipe parameters and the initial conditions: for a length greater than this maximum one, the model requires a mass-flow reduction. In addition, in the presence of a regulating valve, so-called multi-choked flow can arise. The semi-analytical model has been implemented and the results have been compared with a three-dimensional CFD analysis and cross-checked with available field data, showing a good agreement. The Fanno model has been applied for the analysis of some of the actual machines in the Ansaldo Energia fleet under different working conditions. The Fanno tool will be part of the design procedure of new machines. In addition it will define related experimental activities.


2021 ◽  
Vol 135 (4) ◽  
pp. 36-39
Author(s):  
B. Z. Kazymov ◽  
◽  
K. K. Nasirova ◽  

A method is proposed for determining the distribution of reservoir pressure over time in a nonequilibrium-deformable gas reservoir in the case of real gas flow to the well under different technological conditions of well operation, taking into account the real properties of the gas and the reservoir.


Sign in / Sign up

Export Citation Format

Share Document