Rotor Blade Design For a Fan-Jet-Powered Heavy-Lift Helicopter

1969 ◽  
Author(s):  
H. G. Smith ◽  
R. J. Sullivan
Keyword(s):  
Author(s):  
C B Allen

The EROS (European ROtorcraft Software) project was a three-year, European Commission funded, collaborative project between research institutes, universities and industry, with the goal of producing a practical computational fluid dynamic (CFD)-based design tool for rotor blade design. The overlapping mesh, or CHIMERA, approach was adopted for structured grid generation within the project. The specifics of volume grid generation in GEROS, the EROS grid generator, are presented here. The capabilities and effectiveness of GEROS are demonstrated, and sample grids are shown for fixed-wing hovering rotor and forward-flight rotor cases.


2007 ◽  
Vol 31 (4) ◽  
pp. 356-362
Author(s):  
Min-Woo Lee ◽  
Jeong-Hwan Kim ◽  
Jung-Ryul Kim
Keyword(s):  

2012 ◽  
Vol 53 ◽  
pp. 14-22 ◽  
Author(s):  
Tun Lwin ◽  
Ngoc Anh Vu ◽  
Jae-Woo Lee ◽  
Sangho Kim

2021 ◽  
Vol 67 (5) ◽  
pp. 214-222
Author(s):  
Abdulbasit Mohammed ◽  
Hirpa G. Lemu ◽  
Belete Sirahbizu

The design of a windmill rotor is critical for harnessing wind energy. In this work, a study is conducted to optimize the design and performance of a rotor blade that is suitable for low wind conditions. The windmills’ rotor blades are aerodynamically designed based on the SG6043 airfoil and wind speed data at local selected sites. The aerodynamic profile of the rotor blade that can provide a maximum power coefficient, which is the relation between real rotor performance and the available wind energy on a given reference area, was calculated. Different parameters, such as blade shapes, chord distributions, tip speed ratio, geometries set angles, etc., were used to optimize the blade design with the objective of extracting maximum wind power for a water pumping system. Windmill rotor of 10.74 m, 7.34 m, and 6.34 m diameter with three blades were obtained for the selected sites at Abomsa, Metehara, and Ziway in south-east Ethiopia. During the rotary blades performance optimization, blade element momentum (BEM) theory and solving iteration by MATLAB® coding were used.


Author(s):  
Swen Weser ◽  
Uwe Gampe ◽  
Mario Raddatz ◽  
Roland Parchem ◽  
Petr Lukas

Rotor blades are the highest thermal-mechanical loaded components of gas turbines. Their service life is limited by interaction of creep, low cycle fatigue (LCF), high cycle fatigue (HCF) and surface attack. Because assurance of adequate HCF strength of the rotor blade is an important issue of the blade design the European project PREMECCY has been started by the European aircraft engine manufacturers and research institutes to enhance the predictive methods for combined cycle fatigue (CCF), as a superposition of HCF and LCF. Although today’s predictive methods ensure safe blade design, there are certain shortcomings of assessing fatigue life with Haigh or “modified Goodman diagrams”, such as isolated HCF assessment as well as uni-axial and off-resonant testing. HCF and LCF are considered without taking into account their interaction. PREMECCY is aimed to deliver new and improved CCF prediction methods for exploitation in the industrial design process. Beside development of predictive methods the authors are involved in the design and testing of advanced specimens representing rotor blade features. In this connection the paper presents a novel test specimen type and a unique hot gas rig for CCF feature test at mechanical and ambient representative conditions.


Sign in / Sign up

Export Citation Format

Share Document