Evaluation of Location System Combining a GPS Receiver with Inertial Sensor

1991 ◽  
Author(s):  
Hiroaki Tsuji ◽  
Hiroyuki Maeda ◽  
Akihito Shibata ◽  
Fuminori Morisue
2004 ◽  
Vol 37 (6) ◽  
pp. 867-871
Author(s):  
Young Jin Kim ◽  
Youdan Kim ◽  
Chan Gook Park

2020 ◽  
Vol 10 (10) ◽  
pp. 3613
Author(s):  
Malek Karaim ◽  
Mohamed Tamazin ◽  
Aboelmagd Noureldin

The Global Positioning System (GPS) provides an accurate navigation solution in the open sky. However, in some environments such as urban areas or in the presence of signal jamming, GPS signals cannot be easily tracked since they could be harshly attenuated or entirely blocked. This often requires the GPS receiver to go into a signal re-acquisition phase for the corresponding satellite. To avoid the intensive computations necessary for the signal re-lock in a GPS receiver, a robust signal-tracking mechanism that can hold and/or rapidly re-lock on the signals and keep track of their dynamics becomes a necessity. This paper augments a vector-based GPS signal tracking system with a Reduced Inertial Sensor System (RISS) to produce a new ultra-tight GPS/INS integrated system that enhances receivers’ tracking robustness and sensitivity in challenging navigation environments. The introduced system is simple, efficient, reliable, yet inexpensive. To challenge the proposed method with real jamming conditions, real experiment work was conducted inside the Anechoic Chamber room at the Royal Military College of Canada (RMC). The Spirent GSS6700 signal simulator was used to generate GPS signals, and an INS Simulator is used for simulating the inertial measurement unit (IMU) to generate the corresponding trajectory raw data. The NEAT jammer, by NovAtel, was used to generate real jamming signals. Results show a good performance of the proposed method under real signal jamming conditions.


Sensors ◽  
2019 ◽  
Vol 19 (8) ◽  
pp. 1925 ◽  
Author(s):  
Weixin Wang ◽  
Peter Gabriel Adamczyk

Assessing interventions for mobility disorders using real-life movement remains an unsolved problem. We propose a new method combining the strengths of traditional laboratory studies where environment is strictly controlled, and field-based studies where subjects behave naturally. We use a foot-mounted inertial sensor, a GPS receiver and a barometric altitude sensor to reconstruct a subject’s path and detailed foot movement, both indoors and outdoors, during days-long measurement using strapdown navigation and sensor fusion algorithms. We cluster repeated movement paths based on location, and propose that on these paths, most environmental and behavioral factors (e.g., terrain and motivation) are as repeatable as in a laboratory. During each bout of movement along a frequently repeated path, any synchronized measurement can be isolated for study, enabling focused statistical comparison of different interventions. We conducted a 10-day test on one subject wearing athletic shoes and sandals each for five days. The algorithm detected four frequently-repeated straight walking paths with at least 300 total steps and repetitions on at least three days for each condition. Results on these frequently-repeated paths indicated significantly lower foot clearance and shorter stride length and a trend toward decreased stride width when wearing athletic shoes vs. sandals. Comparisons based on all straight walking were similar, showing greater statistical power, but higher variability in the data. The proposed method offers a new way to evaluate how mobility interventions affect everyday movement behavior.


Author(s):  
Kyle D. Wesson ◽  
Swen D. Ericson ◽  
Terence L. Johnson ◽  
Karl W. Shallberg ◽  
Per K. Enge ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document