scholarly journals Tableting Performance of Maize and Potato Starches used in Combination as Binder/Disintegrant in Metronidazole Tablet Formulation

2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Yonni Eshovo Apeji ◽  
Rejoice Thomas Kaigama ◽  
Sani Hadi Ibrahim ◽  
Sophie Nock Anyebe ◽  
Aisha Ohunene Abdussalam ◽  
...  
2020 ◽  
Vol 16 (9) ◽  
pp. 1404-1410
Author(s):  
Rishabha Malviya

Background: In the previous study, investigators have synthesized acrylamide grafted and carboxymethylated derivatives of neem gum and evaluated their potential in the formulation of nanoparticles. In continuation of previous work, authors have evaluated neem gum polysaccharide (NGP), acrylamide grafted neem gum polysaccharide (NGP-g-Am) and carboxymethylated neem gum polysaccharide (CMNGP) as binding agent in the tablet dosage form. Methods: Diclofenac sodium was used as a model drug while microcrystalline cellulose and talc were used as excipient in the preparation of granules employing wet granulation technique. NGP, NGP-g-Am and CMNGP were utilized as binding agent in the preparation of granules. Prepared granules were characterized for various pre-compression and post-compression parameters. Results and Discussion: Binding agents were used in the concentration of 4-24%w/w. NGP incorporated granules showed more bulk density and lower values of tapped density, Carr’s index, bulkiness, Hausner’s ratio and angle of repose as compared to NGP-g-Am consisting granules. NGP-g-Am consisting tablets showed more hardness and zero friability as compared to NGP based tablets. Drug content was found lower for the tablets having grafted polymer in place of NGP. CMNGP were also utilized to prepare granules but granules were not be able to compress keeping all the compacting parameters same as used in the case of NGP and NGP-g-Am consisting granules. NGP and NGP-g-Am were able to sustain drug release up to 6 and 8 h, respectively. Conclusion: It can be concluded that NGP-g-Am induces better properties when used as a binder in the tablet formulation than native polymer, while CMNGP cannot be utilized as a binding agent in the preparation of a tablet.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Dimal A. Shah ◽  
Ishita I. Gondalia ◽  
Vandana B. Patel ◽  
Ashok Mahajan ◽  
Usmangani Chhalotiya ◽  
...  

Abstract Background A sensitive, precise, and stability-indicating high-performance thin-layer chromatographic (HPTLC) method has been developed for the analysis of Remogliflozin etabonate in tablet formulation. HPTLC plates precoated with silica gel 60 F254 were used as the stationary phase; methanol: ethyl acetate: toluene: NH3 (2:4:4:0.1, v/v/v) was used as mobile phase, and densitometry was used for the quantitative estimation of the drug. The proposed method was validated with respect to linearity, accuracy, precision, and robustness and applied for the estimation of drug in tablet dosage form. Results The Rf value of Remogliflozin etabonate was observed to be 0.61. The densitometric estimation was performed in reflectance mode at 229 nm. The method was found to be linear in the range of 500–8000 ng/band for Remogliflozin etabonate. The possible degradation pathway was estimated by performing forced degradation studies. The degradant peaks were well resolved from the drug peak with acceptable resolution in their Rf value. Conclusion An accurate and precise high-performance thin-layer chromatographic method has been developed for the quantification of Remogliflozin etabonate in tablets. Forced degradation studies were performed, and drug was found to be highly susceptible to acid, base hydrolysis, and oxidative stress degradation and gets converted into active drug Remogliflozin. Both Remogliflozin etabonate and Remogliflozin bands were well resolved. The method was applied for the analysis of drug in tablet formulation, and it can be used for routine quality control analysis, as well as for the analysis of stability samples.


Sign in / Sign up

Export Citation Format

Share Document