Multi-agent Platform and Toolbox for Fault Tolerant Networked Control Systems

2009 ◽  
Vol 4 (4) ◽  
Author(s):  
Mário J. G. C. Mendes ◽  
Bruno M. S. Santos ◽  
José Sá da Costa
Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2642
Author(s):  
Godwin Asaamoning ◽  
Paulo Mendes ◽  
Denis Rosário ◽  
Eduardo Cerqueira

The study of multi-agent systems such as drone swarms has been intensified due to their cooperative behavior. Nonetheless, automating the control of a swarm is challenging as each drone operates under fluctuating wireless, networking and environment constraints. To tackle these challenges, we consider drone swarms as Networked Control Systems (NCS), where the control of the overall system is done enclosed within a wireless communication network. This is based on a tight interconnection between the networking and computational systems, aiming to efficiently support the basic control functionality, namely data collection and exchanging, decision-making, and the distribution of actuation commands. Based on a literature analysis, we do not find revision papers about design of drone swarms as NCS. In this review, we introduce an overview of how to develop self-organized drone swarms as NCS via the integration of a networking system and a computational system. In this sense, we describe the properties of the proposed components of a drone swarm as an NCS in terms of networking and computational systems. We also analyze their integration to increase the performance of a drone swarm. Finally, we identify a potential design choice, and a set of open research challenges for the integration of network and computing in a drone swarm as an NCS.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 27 ◽  
Author(s):  
Hao Wang ◽  
Shousheng Xie ◽  
Bin Zhou ◽  
Weixuan Wang

The fault-tolerant robust non-fragile H∞ filtering problem for networked control systems with sensor failures is studied in this paper. The Takagi-Sugeno fuzzy model which can appropriate any nonlinear systems is employed. Based on the model, a filter which can maintain stability and H∞ performance level under the influence of gain perturbation of the filter and sensor failures is designed. Moreover, the gain matrix of sensor failures is converted into a dynamic interval to expand the range of allowed failures. And the sufficient condition for the existence of the desired filter is derived in terms of linear matrix inequalities (LMIs) solutions. Finally a simulation example is given to illustrate the effectiveness of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document