Parameter Optimization and Application of Support Vector Machine Based on Parallel Artificial Fish Swarm Algorithm

2013 ◽  
Vol 8 (3) ◽  
Author(s):  
Jing Bai ◽  
Lihong Yang ◽  
Xueying Zhang
2019 ◽  
Vol 39 (4) ◽  
pp. 954-967 ◽  
Author(s):  
Chih-Jer Lin ◽  
Wen-Lin Chu ◽  
Cheng-Chi Wang ◽  
Chih-Keng Chen ◽  
I-Ting Chen

Ball bearings are important parts of all modern rotating machines. Their function is to reduce friction, support rotating shafts and spindles, and bear loads. Bearing damage can result in abnormal vibrations, cause machine malfunction, and even be dangerous. In this study, analysis of four different ball-bearing conditions was carried out: normal bearings and bearings with inner ring, rolling body, and outer ring malfunction. This was based on electromechanical vibration signals produced on a fault diagnosis simulation platform. The objective was to use a series of signal processing analytical methods to build a set of identification models used to forecast malfunction. Wavelet packet transform technology was first used to process the vibration signal. The signals were pre-processed and analyzed before eigenvalue calculation was done to analyze the signal changes which allowed determination of the nature of the bearing malfunction to be made. The extracted eigenvalues and ball-bearing status categories were input to the support vector machine for model training and testing. Finally, the constructed model parameters were integrated with particle swarm optimization, and the artificial fish-swarm algorithm was used to obtain the optimal parameters for the classifier, and this improved the accuracy of malfunction classification.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Kuan-Cheng Lin ◽  
Sih-Yang Chen ◽  
Jason C. Hung

Rapid advances in information and communication technology have made ubiquitous computing and the Internet of Things popular and practicable. These applications create enormous volumes of data, which are available for analysis and classification as an aid to decision-making. Among the classification methods used to deal with big data, feature selection has proven particularly effective. One common approach involves searching through a subset of the features that are the most relevant to the topic or represent the most accurate description of the dataset. Unfortunately, searching through this kind of subset is a combinatorial problem that can be very time consuming. Meaheuristic algorithms are commonly used to facilitate the selection of features. The artificial fish swarm algorithm (AFSA) employs the intelligence underlying fish swarming behavior as a means to overcome optimization of combinatorial problems. AFSA has proven highly successful in a diversity of applications; however, there remain shortcomings, such as the likelihood of falling into a local optimum and a lack of multiplicity. This study proposes a modified AFSA (MAFSA) to improve feature selection and parameter optimization for support vector machine classifiers. Experiment results demonstrate the superiority of MAFSA in classification accuracy using subsets with fewer features for given UCI datasets, compared to the original FASA.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 692
Author(s):  
Zhe Hua ◽  
Yancai Xiao ◽  
Jiadong Cao

A misalignment fault is a kind of potential fault in double-fed wind turbines. The reasonable and effective fault prediction models are used to predict its development trend before serious faults occur, which can take measures to repair in advance and reduce human and material losses. In this paper, the Least Squares Support Vector Machine optimized by the Improved Artificial Fish Swarm Algorithm is used to predict the misalignment index of the experiment platform. The mixed features of time domain, frequency domain, and time-frequency domain indexes of vibration or stator current signals are the inputs of the Least Squares Support Vector Machine. The kurtosis of the same signals is the output of the model, and theprinciple of the normal distribution is adopted to set the warning line of misalignment fault. Compared with other optimization algorithms, the experimental results show that the proposed prediction model can predict the development trend of the misalignment index with the least prediction error.


Sign in / Sign up

Export Citation Format

Share Document