scholarly journals A loop group method for minimal surfaces in the three-dimensional Heisenberg group

2016 ◽  
Vol 20 (3) ◽  
pp. 409-448
Author(s):  
Josef F. Dorfmeister ◽  
Jun-Ichi Inoguchi ◽  
Shimpei Kobayashi
2013 ◽  
Vol 261 (2) ◽  
pp. 477-496 ◽  
Author(s):  
Heayong Shin ◽  
Young Wook Kim ◽  
Sung-Eun Koh ◽  
Hyung Yong Lee ◽  
Seong-Deog Yang

2016 ◽  
Vol 59 (01) ◽  
pp. 50-61
Author(s):  
Josef F. Dorfmeister ◽  
Jun-ichi Inoguchi ◽  
Shimpei Kobayashi

Abstract In this note we present a simple alternative proof for the Bernstein problem in the threedimensional Heisenberg group Nil3 by using the loop group technique. We clarify the geometric meaning of the two-parameter ambiguity of entire minimal graphs with prescribed Abresch- Rosenberg diòerential.


2014 ◽  
Vol 195 (1) ◽  
pp. 95-110 ◽  
Author(s):  
Adriana A. Cintra ◽  
Francesco Mercuri ◽  
Irene I. Onnis

2014 ◽  
Vol 157 (1) ◽  
pp. 139-150 ◽  
Author(s):  
MACIEJ DUNAJSKI ◽  
WOJCIECH KRYŃSKI

AbstractWe exploit the correspondence between the three–dimensional Lorentzian Einstein–Weyl geometries of the hyper–CR type and the Veronese webs to show that the former structures are locally given in terms of solutions to the dispersionless Hirota equation. We also demonstrate how to construct hyper–CR Einstein–Weyl structures by Kodaira deformations of the flat twistor space$T\mathbb{CP}^1$, and how to recover the pencil of Poisson structures in five dimensions illustrating the method by an example of the Veronese web on the Heisenberg group.


Sign in / Sign up

Export Citation Format

Share Document