scholarly journals KPP pulsating front speed-up by flows

2007 ◽  
Vol 5 (3) ◽  
pp. 575-593 ◽  
Author(s):  
Lenya Ryzhik ◽  
Andrej Zlatoš
Keyword(s):  
Nonlinearity ◽  
2007 ◽  
Vol 20 (12) ◽  
pp. 2907-2921 ◽  
Author(s):  
Andrej Zlatoš
Keyword(s):  

2021 ◽  
Vol 18 (183) ◽  
Author(s):  
Wolfram Möbius ◽  
Francesca Tesser ◽  
Kim M. J. Alards ◽  
Roberto Benzi ◽  
David R. Nelson ◽  
...  

The dynamics of a population expanding into unoccupied habitat has been primarily studied for situations in which growth and dispersal parameters are uniform in space or vary in one dimension. Here, we study the influence of finite-sized individual inhomogeneities and their collective effect on front speed if randomly placed in a two-dimensional habitat. We use an individual-based model to investigate the front dynamics for a region in which dispersal or growth of individuals is reduced to zero (obstacles) or increased above the background (hotspots), respectively. In a regime where front dynamics is determined by a local front speed only, a principle of least time can be employed to predict front speed and shape. The resulting analytical solutions motivate an event-based algorithm illustrating the effects of several obstacles or hotspots. We finally apply the principle of least time to large heterogeneous environments by solving the Eikonal equation numerically. Obstacles lead to a slow-down that is dominated by the number density and width of obstacles, but not by their precise shape. Hotspots result in a speed-up, which we characterize as function of hotspot strength and density. Our findings emphasize the importance of taking the dimensionality of the environment into account.


Author(s):  
Brian Cross

A relatively new entry, in the field of microscopy, is the Scanning X-Ray Fluorescence Microscope (SXRFM). Using this type of instrument (e.g. Kevex Omicron X-ray Microprobe), one can obtain multiple elemental x-ray images, from the analysis of materials which show heterogeneity. The SXRFM obtains images by collimating an x-ray beam (e.g. 100 μm diameter), and then scanning the sample with a high-speed x-y stage. To speed up the image acquisition, data is acquired "on-the-fly" by slew-scanning the stage along the x-axis, like a TV or SEM scan. To reduce the overhead from "fly-back," the images can be acquired by bi-directional scanning of the x-axis. This results in very little overhead with the re-positioning of the sample stage. The image acquisition rate is dominated by the x-ray acquisition rate. Therefore, the total x-ray image acquisition rate, using the SXRFM, is very comparable to an SEM. Although the x-ray spatial resolution of the SXRFM is worse than an SEM (say 100 vs. 2 μm), there are several other advantages.


Author(s):  
A. G. Jackson ◽  
M. Rowe

Diffraction intensities from intermetallic compounds are, in the kinematic approximation, proportional to the scattering amplitude from the element doing the scattering. More detailed calculations have shown that site symmetry and occupation by various atom species also affects the intensity in a diffracted beam. [1] Hence, by measuring the intensities of beams, or their ratios, the occupancy can be estimated. Measurement of the intensity values also allows structure calculations to be made to determine the spatial distribution of the potentials doing the scattering. Thermal effects are also present as a background contribution. Inelastic effects such as loss or absorption/excitation complicate the intensity behavior, and dynamical theory is required to estimate the intensity value.The dynamic range of currents in diffracted beams can be 104or 105:1. Hence, detection of such information requires a means for collecting the intensity over a signal-to-noise range beyond that obtainable with a single film plate, which has a S/N of about 103:1. Although such a collection system is not available currently, a simple system consisting of instrumentation on an existing STEM can be used as a proof of concept which has a S/N of about 255:1, limited by the 8 bit pixel attributes used in the electronics. Use of 24 bit pixel attributes would easily allowthe desired noise range to be attained in the processing instrumentation. The S/N of the scintillator used by the photoelectron sensor is about 106 to 1, well beyond the S/N goal. The trade-off that must be made is the time for acquiring the signal, since the pattern can be obtained in seconds using film plates, compared to 10 to 20 minutes for a pattern to be acquired using the digital scan. Parallel acquisition would, of course, speed up this process immensely.


2004 ◽  
Vol 63 (1) ◽  
pp. 17-29 ◽  
Author(s):  
Friedrich Wilkening ◽  
Claudia Martin

Children 6 and 10 years of age and adults were asked how fast a toy car had to be to catch up with another car, the latter moving with a constant speed throughout. The speed change was required either after half of the time (linear condition) or half of the distance (nonlinear condition), and responses were given either on a rating scale (judgment condition) or by actually producing the motion (action condition). In the linear condition, the data patterns for both judgments and actions were in accordance with the normative rule at all ages. This was not true for the nonlinear condition, where children’s and adults’ judgment and also children’s action patterns were linear, and only adults’ action patterns were in line with the nonlinearity principle. Discussing the reasons for the misconceptions and for the action-judgment dissociations, a claim is made for a new view on the development of children’s concepts of time and speed.


Nature ◽  
2020 ◽  
Vol 584 (7820) ◽  
pp. 192-192 ◽  
Author(s):  
Lucila Ohno-Machado ◽  
Hua Xu
Keyword(s):  

Nature ◽  
2005 ◽  
Author(s):  
David Cyranoski
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document