scholarly journals On uniqueness of solutions of $n$-th order differential equations in conformal geometry

1997 ◽  
Vol 4 (1) ◽  
pp. 91-102 ◽  
Author(s):  
Sun-Yung A. Chang ◽  
Paul C. Yang
Author(s):  
Akbar Zada ◽  
Sartaj Ali ◽  
Tongxing Li

AbstractIn this paper, we study an implicit sequential fractional order differential equation with non-instantaneous impulses and multi-point boundary conditions. The article comprehensively elaborate four different types of Ulam’s stability in the lights of generalized Diaz Margolis’s fixed point theorem. Moreover, some sufficient conditions are constructed to observe the existence and uniqueness of solutions for the proposed model. The proposed model contains both the integer order and fractional order derivatives. Thus, the exponential function appearers in the solution of the proposed model which will lead researchers to study fractional differential equations with well known methods of integer order differential equations. In the last, few examples are provided to show the applicability of our main results.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ahmed Alsaedi ◽  
Soha Hamdan ◽  
Bashir Ahmad ◽  
Sotiris K. Ntouyas

AbstractThis paper is concerned with the solvability of coupled nonlinear fractional differential equations of different orders supplemented with nonlocal coupled boundary conditions on an arbitrary domain. The tools of the fixed point theory are applied to obtain the criteria ensuring the existence and uniqueness of solutions of the problem at hand. Examples illustrating the main results are presented.


Symmetry ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 701 ◽  
Author(s):  
Suphawat Asawasamrit ◽  
Sotiris Ntouyas ◽  
Jessada Tariboon ◽  
Woraphak Nithiarayaphaks

This paper studies the existence and uniqueness of solutions for a new coupled system of nonlinear sequential Caputo and Hadamard fractional differential equations with coupled separated boundary conditions, which include as special cases the well-known symmetric boundary conditions. Banach’s contraction principle, Leray–Schauder’s alternative, and Krasnoselskii’s fixed-point theorem were used to derive the desired results, which are well-illustrated with examples.


2018 ◽  
Vol 2018 (1) ◽  
Author(s):  
Jianjie Wang ◽  
Ali Mai ◽  
Hong Wang

Abstract This paper is mainly devoted to the study of one kind of nonlinear Schrödinger differential equations. Under the integrable boundary value condition, the existence and uniqueness of the solutions of this equation are discussed by using new Riesz representations of linear maps and the Schrödinger fixed point theorem.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Bashir Ahmad ◽  
Sotiris K. Ntouyas ◽  
Hamed H. Alsulami

This paper is devoted to the study of the existence and uniqueness of solutions for th order differential equations with nonlocal integral boundary conditions. Our results are based on a variety of fixed point theorems. Some illustrative examples are discussed. We also discuss the Caputo type fractional analogue of the higher-order problem of ordinary differential equations.


Sign in / Sign up

Export Citation Format

Share Document