scholarly journals Evaluation of the Performance of an Organic Thin Film Solar Cell Prepared Using the Active Layer of Poly[[9-(1-octylnonyl)-9H-carbazole-2.7-diyl]-2.5-thiophenediyl-2.1.3-benzothiadiazole-4.7-Diyl-2.5-thiophenediyl]/[6,6]-Phenyl C71Butyric Acid Methyl Ester Composite Thin Film

2012 ◽  
Vol 13 (1) ◽  
pp. 43-46 ◽  
Author(s):  
Shizuyasu Ochiai ◽  
Masaki Uchiyama ◽  
Santhakumar Kannappan ◽  
Ramajothi Jayaraman ◽  
Paik-Kyun Shin
2011 ◽  
Vol 1285 ◽  
Author(s):  
Maurice Clair ◽  
Christian Scholz ◽  
Bernd Keiper ◽  
Jens Haenel

ABSTRACTIn the last years more and more effort has been put into the development of thin-film organic solar cells using conductive and semi-conductive polymers. A great advantage of these polymers is the possibility to deposit them in high throughput print and coating processes. This feature provides huge potential for future production of low cost photovoltaics. While TCO layers form the transparent front contact, polymers are used for the buildup of the active layer and the design of the interface between active layer and front contact. The polymer materials have to be patterned in order to allow for a row connection of the solar cell work (typically by structured deposition, e.g. printing). In addition the bulk hetero junction (BHJ) of the active layer consisting of poly(3-hexylthiophene):phenyl-C61-butyric acid methyl ester (P3HT:PCBM) requires an annealing step to optimize the layers structure and therewith the efficiency of the solar cell (typically by thermal treatment, e.g. oven). 3D-Micromac used ultra-short pulsed lasers to evaluate the applicability of various wavelengths for the selective ablation of the BHJ consisting of P3HT:PCBM on top of a Poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) (PEDOT:PSS) and indium tin oxide (ITO) film system on glass substrates. The process of laser annealing was investigated using a short-pulsed laser with a wavelength close to the absorption maxima of the BHJ.


2016 ◽  
Vol 18 (16) ◽  
pp. 11132-11138 ◽  
Author(s):  
Rickard Hansson ◽  
Camilla Lindqvist ◽  
Leif K. E. Ericsson ◽  
Andreas Opitz ◽  
Ergang Wang ◽  
...  

We have studied the photo-degradation in air of a blend of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) and poly[2,3-bis-(3-octyloxyphenyl)quinoxaline-5,8-diyl-alt-thiophene-2,5-diyl] (TQ1), and how the photo-degradation affects the solar cell performance.


2020 ◽  
Vol 16 (4) ◽  
pp. 556-567
Author(s):  
Asma Khalil ◽  
Zubair Ahmad ◽  
Farid Touati ◽  
Mohamed Masmoudi

Background: The photo-absorption and light trapping through the different layers of the organic solar cell structures are a growing concern now-a-days as it affects dramatically the overall efficiency of the cells. In fact, selecting the right material combination is a key factor in increasing the efficiency in the layers. In addition to good absorption properties, insertion of nanostructures has been proved in recent researches to affect significantly the light trapping inside the organic solar cell. All these factors are determined to expand the absorption spectrum and tailor it to a wider spectrum. Objective: The purpose of this investigation is to explore the consequence of the incorporation of the Ag nanostructures, with different sizes and structures, on the photo absorption of the organic BHJ thin films. Methods: Through a three-dimensional Maxwell solver software, Lumerical FDTD, a simulation and comparison of the optical absorption of the three famous organic materials blends poly(3- hexylthiophene): phenyl C71 butyric acid methyl ester (P3HT:PCBM), poly[N-9″-heptadecanyl-2,7- carbazole-alt-5,5-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDTBT:PCBM) and poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b′]dithiophene)-alt- 4,7-(2,1,3-benzothiadiazole)]: phenyl C71 butyric acid methyl ester (PCDPDTBT:PCBM) has been conducted. Furthermore, FDTD simulation study of the incorporation of nanoparticles structures with different sizes, in different locations and concentrations through a bulk heterojunction organic solar cell structure has also been performed. Results: It has been demonstrated that embedding nanostructures in different locations of the cell, specifically in the active layer and the hole transporting layer had a considerable effect of widening the absorption spectrum and increasing the short circuit current. The effect of incorporation the nanostructures in the active layer has been proved to be greater than in the HTL. Furthermore, the comparison results showed that, PCDTBT:PCBM is no more advantageous over P3HT:PCBM and PCPDTBT:PCBM, and P3HT:PCBM took the lead and showed better performance in terms of absorption spectrum and short circuit current value. Conclusion: This work revealed the significant effect of size, location and concentration of the Ag nanostructures while incorporated in the organic solar cell. In fact, embedding nanostructures in the solar cell widen the absorption spectrum and increases the short circuit current, this result has been proven to be significant only when the nanostructures are inserted in the active layer following specific dimensions and structures.


2013 ◽  
Vol 29 (5) ◽  
pp. 998-1002 ◽  
Author(s):  
Jing-chang Zhang ◽  
Yu Wen ◽  
Qi-yun Li ◽  
Zhi-yue Han ◽  
Zhen-hai Fu ◽  
...  

2009 ◽  
Vol 93 (6-7) ◽  
pp. 1029-1032 ◽  
Author(s):  
Daisuke Fujishima ◽  
Hiroshi Kanno ◽  
Toshihiro Kinoshita ◽  
Eiji Maruyama ◽  
Makoto Tanaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document