Risk assessment for the occurrence of Escherichia coli 0157:H7 in indigenous fermented milk (Lee Naga a Agbora) produced in Uganda

2010 ◽  
Vol 5 (2) ◽  
Author(s):  
SA Wawa ◽  
ML Sserunjogi ◽  
P Ogwok ◽  
D Mugampoza
2021 ◽  
Vol 791 ◽  
pp. 148189
Author(s):  
Rajat Nag ◽  
Ciaran Monahan ◽  
Paul Whyte ◽  
Bryan K. Markey ◽  
Vincent O'Flaherty ◽  
...  

2008 ◽  
Vol 74 (10) ◽  
pp. 3138-3142 ◽  
Author(s):  
Haiping Li ◽  
Mehrdad Tajkarimi ◽  
Bennie I. Osburn

ABSTRACT Vacuum cooling is a common practice in the California leafy green industry. This study addressed the impact of vacuum cooling on the infiltration of Escherichia coli O157:H7 into lettuce as part of the risk assessment responding to the E. coli O157:H7 outbreaks associated with leafy green produce from California. Vacuum cooling significantly increased the infiltration of E. coli O157:H7 into the lettuce tissue (2.65E+06 CFU/g) compared to the nonvacuumed condition (1.98E+05 CFU/g). A stringent surface sterilization and quadruple washing could not eliminate the internalized bacteria from lettuce. It appeared that vacuuming forcibly changed the structure of lettuce tissue such as the stomata, suggesting a possible mechanism of E. coli O157:H7 internalization. Vacuuming also caused a lower reduction rate of E. coli O157:H7 in stored lettuce leaves than that for the nonvacuumed condition.


2001 ◽  
Vol 64 (4) ◽  
pp. 462-469 ◽  
Author(s):  
A. JAGANNATH ◽  
M. N. RAMESH ◽  
M. C. VARADARAJ

The increasing popularity of traditional milk-based foods has placed emphasis on the need for microbial safety in food-chain establishments, as there are ample possibilities for foodborne pathogens to occur as postprocessing contaminants. The behavioral pattern of an enterotoxigenic strain of Escherichia coli D 21 introduced as a postprocessing contaminant in shrikhand, a traditional sweetened lactic fermented milk product, was studied with variables of initial inoculum (4.3, 5.3, and 6.3 log10 CFU/g), storage temperature (4, 10, and 16°C), and storage period (4, 9, and 14 days). During storage of shrikhand prepared individually with Lactobacillus delbruecki ssp. bulgaricus CFR 2028 and Lactococcus lactis ssp. cremoris B-634, there was a steady decrease in the viable count of E. coli that was proportional to the initial inoculum of E. coli introduced into shrikhand. The data were subjected to multivariate analysis, and equations were derived to predict the behavior of E. coli in shrikhand. The predicted values for the probable survival of E. coli showed good agreement with the experimental values with a majority of these predictions being fail-safe. The values of statistical indices showed that the model fits ranged between extremely good and satisfactory. Response surface plots were generated to describe the behavioral pattern of E. coli. The derived models and response surface plots enabled prediction of the survival of E. coli in shrikhand as a function of initial inoculum levels, storage temperatures, and storage periods of shrikhand. These predictions were valid within the limits of the experimental variables used to develop the model.


Meat Science ◽  
2006 ◽  
Vol 74 (1) ◽  
pp. 76-88 ◽  
Author(s):  
Geraldine Duffy ◽  
Enda Cummins ◽  
Pádraig Nally ◽  
Stephen O’ Brien ◽  
Francis Butler

2009 ◽  
Vol 72 (2) ◽  
pp. 425-427 ◽  
Author(s):  
KONSTANTINOS KOUTSOUMANIS

In this study, I describe a systematic approach for modeling food spoilage in microbial risk assessment that is based on the incorporation of kinetic spoilage modeling in exposure assessment by combining data and models for the specific spoilage organisms (SSO: fraction of the total microflora responsible for spoilage) with those for pathogens. The structure of the approach is presented through an exposure assessment application for Escherichia coli O157:H7 in ground beef. The proposed approach allows for identifying spoiled products at the time of consumption by comparing the estimated level of SSO (pseudomonads) with the spoilage level (level of SSO at which spoilage is observed). The results of the application indicate that ignoring spoilage in risk assessment could lead to significant overestimations of risk.


Author(s):  
Angela Catford ◽  
Marie-Claude Lavoie ◽  
Ben Smith ◽  
Enrico Buenaventura ◽  
Helene Couture ◽  
...  

2014 ◽  
Vol 5 (1) ◽  
pp. 33
Author(s):  
Danúbia R Caetano ◽  
Maike Taís Maziero Montanhini

<p><em>The fermented milk by kefir grains is a probiotic dairy product that provides to the consumer several health benefits, and can also be consumed by lactose intolerant people. These grains contain in their microbiota acid-lactic bacteria able to inhibit the growth of pathogenic microorganisms. This research aimed to evaluate the </em>Escherichia coli<em> inhibition by the kefir fermentation, contaminated during its manufacturing. Thus, were used the standard strain ATCC 11229 </em>E. coli<em>, inoculated in the milk for the kefir production. After the fermentation, the sample were diluted in peptone water and plated in Petrifilm, followed by incubation at 36 &deg;C for 24 hours. In all repetitions, were observed at the end that the kefir fermentation did not inhibit the multiplication of the contaminant bacteria. The results reinforce the importance of the use of milk with quality, and to follow the hygiene proceedings in both utensils and manipulators, during the kefir production.</em></p><p>DOI: 10.14685/rebrapa.v5i1.158</p><p>&nbsp;</p><p>&nbsp;</p>


2001 ◽  
Vol 68 (4) ◽  
pp. 639-652 ◽  
Author(s):  
GRACIELA L. GARROTE ◽  
ANALÍA G. ABRAHAM ◽  
GRACIELA L. DE ANTONI

Chemical and microbiological composition of four Argentinean kefir grains from different sources as well as characteristics of the corresponding fermented milk were studied. Kefir grains CIDCA AGK1, AGK2 and AGK4 did not show significant differences in their chemical and microbiological composition. In contrast, protein and yeast content of AGK3 was higher than in the other grains. Although grain microflora comprised lactobacilli, lactococcus, acetic acid bacteria and yeast, we found an important difference regarding species. Lactococcus lactis subsp. lactis, Lactobacillus kefir, Lactobacillus plantarum, Acetobacter and Saccharomyces were present in all types of kefir grain. While Leuconostoc mesenteroides was only isolated from grains CIDCA AGK1 and Lactococcus lactis subsp. lactis biovar diacetylactis, Lactobacillus parakefir and Kluyveromyces marxianus were only isolated from CIDCA AGK2 grains. All grains produced acid products with pH between 3·5 and 4·0. The apparent viscosity of AGK1 fermented milk was greater than the product obtained with AGK4. All fermented milks had inhibitory power towards Escherichia coli but AGK1 and AGK2 supernatants were able to halt the bacterial growth for at least 25 h. Grain weight increment in AGK1, AGK2 and AGK3 during growth in milk did not show significant differences. Despite their fermenting activity, AGK4 grains did not increase their weight.


Sign in / Sign up

Export Citation Format

Share Document