scholarly journals Mathematical Model of the Transmission Dynamics of Novel Corona Virus (COVID-19) Pandamic Disease with Optimal Control

Author(s):  
Getachew Beyecha Batu ◽  
Eshetu Dadi Gurmu

In this paper, we have developed a deterministic mathematical model that discribe the transmission dynamics of novel corona virus with prevention control. The disease free and endemic equilibrium point of the model were calculated and its stability analysis were prformed. The reproduction number R0 of the model which determine the persistence of the disease or not was calculated by using next generation matrix and also used to determine the stability of the disease free and endemic equilibrium points which exists conditionally. Furthermore, sensitivity analysis of the model was performed on the parameters in the equation of reproduction to determine their relative significance on the transmission dynamics of COVID- 19 pandemic disease. Finally the simulations were carried out using MATLAB R2015b with ode45 solver. The simulation results illustrated that applying prevention control can successfully reduces the transmission dynamic of COVID-19 infectious disease.

2020 ◽  
Vol 24 (5) ◽  
pp. 917-922
Author(s):  
J. Andrawus ◽  
F.Y. Eguda ◽  
I.G. Usman ◽  
S.I. Maiwa ◽  
I.M. Dibal ◽  
...  

This paper presents a new mathematical model of a tuberculosis transmission dynamics incorporating first and second line treatment. We calculated a control reproduction number which plays a vital role in biomathematics. The model consists of two equilibrium points namely disease free equilibrium and endemic equilibrium point, it has been shown that the disease free equilibrium point was locally asymptotically stable if thecontrol reproduction number is less than one and also the endemic equilibrium point was locally asymptotically stable if the control reproduction number is greater than one. Numerical simulation was carried out which supported the analytical results. Keywords: Mathematical Model, Biomathematics, Reproduction Number, Disease Free Equilibrium, Endemic Equilibrium Point


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Pakwan Riyapan ◽  
Sherif Eneye Shuaib ◽  
Arthit Intarasit

In this study, we propose a new mathematical model and analyze it to understand the transmission dynamics of the COVID-19 pandemic in Bangkok, Thailand. It is divided into seven compartmental classes, namely, susceptible S , exposed E , symptomatically infected I s , asymptomatically infected I a , quarantined Q , recovered R , and death D , respectively. The next-generation matrix approach was used to compute the basic reproduction number denoted as R cvd 19 of the proposed model. The results show that the disease-free equilibrium is globally asymptotically stable if R cvd 19 < 1 . On the other hand, the global asymptotic stability of the endemic equilibrium occurs if R cvd 19 > 1 . The mathematical analysis of the model is supported using numerical simulations. Moreover, the model’s analysis and numerical results prove that the consistent use of face masks would go on a long way in reducing the COVID-19 pandemic.


2020 ◽  
Author(s):  
Tamer Sanlidag ◽  
Nazife Sultanoglu ◽  
Bilgen Kaymakamzade ◽  
Evren Hincal ◽  
Murat Sayan ◽  
...  

Abstract The present study studied the dynamics of SARS-CoV-2 in Northern-Cyprus (NC) by using real data and a designed mathematical model. The model consisted of two equilibrium points, which were disease-free and epidemic. The stability of the equilibrium points was determined by the magnitude of the basic reproduction number (𝑹𝟎). If 𝑹𝟎 < 1, the disease eventually disappears, if 𝑹𝟎 ≥ 1, the presence of an epidemic is stated. 𝑹𝟎 has been calculated patient zero, with a range of 2.38 to 0.65. Currently, the 𝑹𝟎 for NC was found to be 0.65, indicating that NC is free from the SARS-CoV-2 epidemic.


2020 ◽  
Author(s):  
Tamer Sanlidag ◽  
Nazife Sultanoglu ◽  
Bilgen Kaymakamzade ◽  
Evren Hincal ◽  
Murat Sayan ◽  
...  

Abstract The present study studied the dynamics of SARS-CoV-2 in Northern-Cyprus (NC) by using real data and a designed mathematical model. The model consisted of two equilibrium points, which were disease-free and epidemic. The stability of the equilibrium points was determined by the magnitude of the basic reproduction number (𝑹𝟎). If 𝑹𝟎 < 1, the disease eventually disappears, if 𝑹𝟎 ≥ 1, the presence of an epidemic is stated. 𝑹𝟎 has been calculated patient zero, with a range of 2.38 to 0.65. Currently, the 𝑹𝟎 for NC was found to be 0.65, indicating that NC is free from the SARS-CoV-2epidemic.


Author(s):  
T. J. Oluwafemi ◽  
E. Azuaba ◽  
Y. M. Kura

A Mathematical model of a system of non-linear differential equation is developed to study the transmission dynamics of malaria, dengue and typhoid triple infection. In this work, the basic reproduction number is derived using the Next Generation Matrix, also we computed the disease free equilibrium point. The disease free equilibrium (DFE) point is analyzed and was found that the DFE is locally stable but may be globally unstable when R0 < 1.


2021 ◽  
Author(s):  
Idowu Kabir Oluwatobi ◽  
Erinle-Ibrahim L.M

Abstract This paper work was designed to study the effect of treatment on the transmission of pneumonia infection. When studying the transmission dynamics of infectious diseases with an objective of suggesting control measures, it is important to consider the stability of equilibrium points. In this paper, basic reproduction number, effective reproduction number, existences and stability of the equilibrium point were established.Using Lyaponov function we discovered that the disease free equilibrium is unstable. The results are presented in graphs and it is discovered that the spread of the infection will be greatly affected by the rate of treatment and natural immunity.


2020 ◽  
Author(s):  
Jangyadatta Behera ◽  
Aswin Kumar Rauta ◽  
Yerra Shankar Rao ◽  
Sairam Patnaik

Abstract In this paper, a mathematical model is proposed on the spread and control of corona virus disease2019 (COVID19) to ascertain the impact of pre quarantine for suspected individuals having travel history ,immigrants and new born cases in the susceptible class following the lockdown or shutdown rules and adopted the post quarantine process for infected class. Set of nonlinear ordinary differential equations (ODEs) are generated and parameters like natural mortality rate, rate of COVID-19 induced death, rate of immigrants, rate of transmission and recovery rate are integrated in the scheme. A detailed analysis of this model is conducted analytically and numerically. The local and global stability of the disease is discussed mathematically with the help of Basic Reproduction Number. The ODEs are solved numerically with the help of Runge-Kutta 4th order method and graphs are drawn using MATLAB software to validate the analytical result with numerical simulation. It is found that both results are in good agreement with the results available in the existing literatures. The stability analysis is performed for both disease free equilibrium and endemic equilibrium points. The theorems based on Routh-Hurwitz criteria and Lyapunov function are proved .It is found that the system is locally asymptotically stable at disease free and endemic equilibrium points for basic reproduction number less than one and globally asymptotically stable for basic reproduction number greater than one. Finding of this study suggest that COVID-19 would remain pandemic with the progress of time but would be stable in the long-term if the pre and post quarantine policy for asymptomatic and symptomatic individuals are implemented effectively followed by social distancing, lockdown and containment.


Author(s):  
H. O. Nyaberi ◽  
D. M. Malonza

Cholera, a water-borne disease characterized by intense watery diarrhea, affects people in the regions with poor hygiene and untreated drinking water. This disease remains a menace to public health globally and it indicates inequity and lack of community development. In this research, SIQR-B mathematical model based on a system of ordinary differential equations is formulated to study the dynamics of cholera transmission with health education campaign and treatmentthrough quarantine as controls against epidemic in Kenya. The effective basic reproduction number is computed using the next generation matrix method. The equilibrium points of the model are determined and their stability is analysed. Results of stability analysis show that the disease free equilibrium is both locally and globally asymptotically stable R0 < 1 while the endemic equilibrium is both locally and globally asymptotically stable R0 > 1. Numerical simulation carried out using MATLAB software shows that when health education campaign is efficient, the number of cholera infected individuals decreases faster, implying that health education campaign is vital in controlling the spread of cholera disease.


2020 ◽  
Vol 1 (2) ◽  
pp. 71-80
Author(s):  
Anisa Fitra Dila Hubu ◽  
Novianita Achmad ◽  
Nurwan Nurwan

This study discusses the spread of measles in a mathematical model. Mathematical modeling is not only limited to the world of mathematics but can also be applied in the health sector. Measles is a disease with a high transmission rate. The spread of measles in this model was modified by adding the treated population and the treatment parameters of the exposed population. In this article, we examine the equilibrium points in the SMEIUR mathematical model and perform stability analysis and numerical simulations. In this study, two equilibrium points were obtained, namely the disease-free and endemic equilibrium point. After getting the equilibrium point, an analysis is carried out to find the stability of the model. Furthermore, the simulation produces a stable disease-free equilibrium point at conditions R01 and a stable endemic equilibrium point at conditions R01. In this study, a numerical simulation was carried out to see population dynamics by varying the parameter values. The simulation results show that to reduce the spread of measles, it is necessary to increase the rate of advanced immunization, the rate of the infected population undergoing treatment, and the proportion of individuals who are treated cured.


2017 ◽  
Vol 10 (07) ◽  
pp. 1750096 ◽  
Author(s):  
Muhammad Altaf Khan ◽  
Yasir Khan ◽  
Taj Wali Khan ◽  
Saeed Islam

In this paper, a dynamical system of a SEIQV mathematical model with nonlinear generalized incidence arising in biology is investigated. The stability of the disease-free and endemic equilibrium is discussed. The basic reproduction number of the model is obtained. We found that the disease-free and endemic equilibrium is stable locally as well as globally asymptotically stable. For [Formula: see text], the disease-free equilibrium is stable both locally and globally and for [Formula: see text], the endemic equilibrium is stable globally asymptotically. Finally, some numerical results are presented.


Sign in / Sign up

Export Citation Format

Share Document